Non-abelian extensions of minimal rotations
Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 1-17
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider continuous extensions of minimal rotations on a locally connected compact group $X$ by cocycles taking values in locally compact Lie groups and prove regularity (i.e. the existence of orbit closures which project onto the whole basis $X$) in certain special situations beyond the nilpotent case. We further discuss an open question on cocycles acting on homogeneous spaces which seems to be the missing key for a general regularity theorem.
Keywords:
consider continuous extensions minimal rotations locally connected compact group cocycles taking values locally compact lie groups prove regularity existence orbit closures which project whole basis certain special situations beyond nilpotent further discuss question cocycles acting homogeneous spaces which seems missing key general regularity theorem
Affiliations des auteurs :
Ulrich Haböck 1 ; Vyacheslav Kulagin 2
@article{10_4064_cm117_1_1,
author = {Ulrich Hab\"ock and Vyacheslav Kulagin},
title = {Non-abelian extensions of minimal rotations},
journal = {Colloquium Mathematicum},
pages = {1--17},
publisher = {mathdoc},
volume = {117},
number = {1},
year = {2009},
doi = {10.4064/cm117-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-1/}
}
TY - JOUR AU - Ulrich Haböck AU - Vyacheslav Kulagin TI - Non-abelian extensions of minimal rotations JO - Colloquium Mathematicum PY - 2009 SP - 1 EP - 17 VL - 117 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm117-1-1/ DO - 10.4064/cm117-1-1 LA - en ID - 10_4064_cm117_1_1 ER -
Ulrich Haböck; Vyacheslav Kulagin. Non-abelian extensions of minimal rotations. Colloquium Mathematicum, Tome 117 (2009) no. 1, pp. 1-17. doi: 10.4064/cm117-1-1
Cité par Sources :