A classification of symmetric algebras of strictly canonical type
Colloquium Mathematicum, Tome 116 (2009) no. 2, pp. 249-271.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

In continuation of our article in Colloq. Math. 116.1, we give a complete description of the symmetric algebras of strictly canonical type by quivers and relations, using Brauer quivers.
DOI : 10.4064/cm116-2-9
Keywords: continuation article colloq math complete description symmetric algebras strictly canonical type quivers relations using brauer quivers

Marta Kwiecie/n 1 ; Andrzej Skowro/nski 2

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
2 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toru/n, Poland
@article{10_4064_cm116_2_9,
     author = {Marta Kwiecie/n and Andrzej Skowro/nski},
     title = {A classification of symmetric algebras of
 strictly canonical type},
     journal = {Colloquium Mathematicum},
     pages = {249--271},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {2009},
     doi = {10.4064/cm116-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm116-2-9/}
}
TY  - JOUR
AU  - Marta Kwiecie/n
AU  - Andrzej Skowro/nski
TI  - A classification of symmetric algebras of
 strictly canonical type
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 249
EP  - 271
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm116-2-9/
DO  - 10.4064/cm116-2-9
LA  - en
ID  - 10_4064_cm116_2_9
ER  - 
%0 Journal Article
%A Marta Kwiecie/n
%A Andrzej Skowro/nski
%T A classification of symmetric algebras of
 strictly canonical type
%J Colloquium Mathematicum
%D 2009
%P 249-271
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm116-2-9/
%R 10.4064/cm116-2-9
%G en
%F 10_4064_cm116_2_9
Marta Kwiecie/n; Andrzej Skowro/nski. A classification of symmetric algebras of
 strictly canonical type. Colloquium Mathematicum, Tome 116 (2009) no. 2, pp. 249-271. doi : 10.4064/cm116-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm116-2-9/

Cité par Sources :