A criterion for rings which are
locally valuation rings
Colloquium Mathematicum, Tome 116 (2009) no. 2, pp. 153-164
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Using the notion of cyclically pure injective modules, a characterization of rings which are locally valuation rings is established. As applications, new characterizations
of Prüfer domains and pure semisimple rings are provided. Namely, we show that a domain $R$ is
Prüfer if and only if two of the three classes of pure injective, cyclically pure injective and RD-injective modules are equal. Also, we prove that a commutative ring $R$ is pure semisimple if and only if every $R$-module is cyclically pure injective.
Keywords:
using notion cyclically pure injective modules characterization rings which locally valuation rings established applications characterizations fer domains pure semisimple rings provided namely domain fer only three classes pure injective cyclically pure injective rd injective modules equal prove commutative ring pure semisimple only every r module cyclically pure injective
Affiliations des auteurs :
Kamran Divaani-Aazar 1 ; Mohammad Ali Esmkhani 2 ; Massoud Tousi 3
@article{10_4064_cm116_2_2,
author = {Kamran Divaani-Aazar and Mohammad Ali Esmkhani and Massoud Tousi},
title = {A criterion for rings which are
locally valuation rings},
journal = {Colloquium Mathematicum},
pages = {153--164},
year = {2009},
volume = {116},
number = {2},
doi = {10.4064/cm116-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm116-2-2/}
}
TY - JOUR AU - Kamran Divaani-Aazar AU - Mohammad Ali Esmkhani AU - Massoud Tousi TI - A criterion for rings which are locally valuation rings JO - Colloquium Mathematicum PY - 2009 SP - 153 EP - 164 VL - 116 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm116-2-2/ DO - 10.4064/cm116-2-2 LA - en ID - 10_4064_cm116_2_2 ER -
%0 Journal Article %A Kamran Divaani-Aazar %A Mohammad Ali Esmkhani %A Massoud Tousi %T A criterion for rings which are locally valuation rings %J Colloquium Mathematicum %D 2009 %P 153-164 %V 116 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm116-2-2/ %R 10.4064/cm116-2-2 %G en %F 10_4064_cm116_2_2
Kamran Divaani-Aazar; Mohammad Ali Esmkhani; Massoud Tousi. A criterion for rings which are locally valuation rings. Colloquium Mathematicum, Tome 116 (2009) no. 2, pp. 153-164. doi: 10.4064/cm116-2-2
Cité par Sources :