Left sections and the left part of an artin algebra
Colloquium Mathematicum, Tome 116 (2009) no. 2, pp. 273-300.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define a notion of left section in an Auslander–Reiten component, by weakening one of the axioms for sections. We derive a generalisation of the Liu–Skowroński criterion for tilted algebras, then apply our results to describe the Auslander–Reiten components lying in the left part of an artin algebra.
DOI : 10.4064/cm116-2-10
Keywords: define notion section auslander reiten component weakening axioms sections derive generalisation liu skowro ski criterion tilted algebras apply results describe auslander reiten components lying part artin algebra

Ibrahim Assem 1

1 Département de mathématiques Faculté des sciences Université de Sherbrooke Sherbrooke, Québec, J1K 2R1, Canada
@article{10_4064_cm116_2_10,
     author = {Ibrahim Assem},
     title = {Left sections and the left part of an artin algebra},
     journal = {Colloquium Mathematicum},
     pages = {273--300},
     publisher = {mathdoc},
     volume = {116},
     number = {2},
     year = {2009},
     doi = {10.4064/cm116-2-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm116-2-10/}
}
TY  - JOUR
AU  - Ibrahim Assem
TI  - Left sections and the left part of an artin algebra
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 273
EP  - 300
VL  - 116
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm116-2-10/
DO  - 10.4064/cm116-2-10
LA  - en
ID  - 10_4064_cm116_2_10
ER  - 
%0 Journal Article
%A Ibrahim Assem
%T Left sections and the left part of an artin algebra
%J Colloquium Mathematicum
%D 2009
%P 273-300
%V 116
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm116-2-10/
%R 10.4064/cm116-2-10
%G en
%F 10_4064_cm116_2_10
Ibrahim Assem. Left sections and the left part of an artin algebra. Colloquium Mathematicum, Tome 116 (2009) no. 2, pp. 273-300. doi : 10.4064/cm116-2-10. http://geodesic.mathdoc.fr/articles/10.4064/cm116-2-10/

Cité par Sources :