Beyond Lebesgue and Baire: generic regular variation
Colloquium Mathematicum, Tome 116 (2009) no. 1, pp. 119-138.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the No Trumps combinatorial property (NT), introduced for the study of the foundations of regular variation by the authors, permits a natural extension of the definition of the class of functions of regular variation, including the measurable/Baire functions to which the classical theory restricts itself. The “generic functions of regular variation” defined here characterize the maximal class of functions to which the three fundamental theorems of regular variation (Uniform Convergence, Representation and Characterization Theorems) apply. The proof uses combinatorial variants of the Steinhaus and Ostrowski Theorems deduced from NT in an earlier paper of the authors.
DOI : 10.4064/cm116-1-6
Keywords: trumps combinatorial property introduced study foundations regular variation authors permits natural extension definition class functions regular variation including measurable baire functions which classical theory restricts itself generic functions regular variation defined here characterize maximal class functions which three fundamental theorems regular variation uniform convergence representation characterization theorems apply proof uses combinatorial variants steinhaus ostrowski theorems deduced earlier paper authors

N. H. Bingham 1 ; A. J. Ostaszewski 2

1 Mathematics Department Imperial College London London SW7 2AZ, UK
2 Mathematics Department London School of Economics Houghton Street London WC2A 2AE, UK
@article{10_4064_cm116_1_6,
     author = {N. H. Bingham and A. J. Ostaszewski},
     title = {Beyond {Lebesgue} and {Baire:
} generic regular variation},
     journal = {Colloquium Mathematicum},
     pages = {119--138},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2009},
     doi = {10.4064/cm116-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-6/}
}
TY  - JOUR
AU  - N. H. Bingham
AU  - A. J. Ostaszewski
TI  - Beyond Lebesgue and Baire:
 generic regular variation
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 119
EP  - 138
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-6/
DO  - 10.4064/cm116-1-6
LA  - en
ID  - 10_4064_cm116_1_6
ER  - 
%0 Journal Article
%A N. H. Bingham
%A A. J. Ostaszewski
%T Beyond Lebesgue and Baire:
 generic regular variation
%J Colloquium Mathematicum
%D 2009
%P 119-138
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-6/
%R 10.4064/cm116-1-6
%G en
%F 10_4064_cm116_1_6
N. H. Bingham; A. J. Ostaszewski. Beyond Lebesgue and Baire:
 generic regular variation. Colloquium Mathematicum, Tome 116 (2009) no. 1, pp. 119-138. doi : 10.4064/cm116-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-6/

Cité par Sources :