Beyond Lebesgue and Baire:
generic regular variation
Colloquium Mathematicum, Tome 116 (2009) no. 1, pp. 119-138
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the No Trumps combinatorial property (NT), introduced for the study of the foundations of regular variation by the authors, permits a natural extension of the definition of the class of functions of regular variation, including the measurable/Baire functions to which the classical theory restricts itself. The “generic functions of regular variation” defined here characterize the maximal class of functions to which the three fundamental theorems of regular variation (Uniform Convergence, Representation and Characterization Theorems) apply. The proof uses combinatorial variants of the Steinhaus and Ostrowski Theorems deduced from NT in an earlier paper of the authors.
Keywords:
trumps combinatorial property introduced study foundations regular variation authors permits natural extension definition class functions regular variation including measurable baire functions which classical theory restricts itself generic functions regular variation defined here characterize maximal class functions which three fundamental theorems regular variation uniform convergence representation characterization theorems apply proof uses combinatorial variants steinhaus ostrowski theorems deduced earlier paper authors
Affiliations des auteurs :
N. H. Bingham 1 ; A. J. Ostaszewski 2
@article{10_4064_cm116_1_6,
author = {N. H. Bingham and A. J. Ostaszewski},
title = {Beyond {Lebesgue} and {Baire:
} generic regular variation},
journal = {Colloquium Mathematicum},
pages = {119--138},
publisher = {mathdoc},
volume = {116},
number = {1},
year = {2009},
doi = {10.4064/cm116-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-6/}
}
TY - JOUR AU - N. H. Bingham AU - A. J. Ostaszewski TI - Beyond Lebesgue and Baire: generic regular variation JO - Colloquium Mathematicum PY - 2009 SP - 119 EP - 138 VL - 116 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-6/ DO - 10.4064/cm116-1-6 LA - en ID - 10_4064_cm116_1_6 ER -
N. H. Bingham; A. J. Ostaszewski. Beyond Lebesgue and Baire: generic regular variation. Colloquium Mathematicum, Tome 116 (2009) no. 1, pp. 119-138. doi: 10.4064/cm116-1-6
Cité par Sources :