Region of variability for
spiral-like functions with respect to a boundary point
Colloquium Mathematicum, Tome 116 (2009) no. 1, pp. 31-46
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $\mu\in\mathbb C$
such that ${\rm Re\,}\mu>0$
let ${\mathcal F}_{\mu} $ denote the class of all non-vanishing
analytic functions $f$ in the unit disk $\mathbb{D}$
with $f(0)=1$ and
$$
{\rm Re} \bigg(\frac{2\pi}{\mu}\, \frac{zf'(z)}{f(z)}+ \frac{1+z}{1-z}\bigg )
>0 \quad\ \hbox{in ${\mathbb D}$}.
$$
For any fixed $z_0$ in the unit disk, $a\in\mathbb{C}$ with $|a|\leq 1$ and
$\lambda\in\overline{\mathbb{D}}$,
we shall determine the region of variability $V(z_0,\lambda)$ for
$\log f(z_0)$ when $f$ ranges over the class
\begin{multline*}
\mathcal{F}_{\mu}(\lambda) =
\biggl\{ f\in{\mathcal F}_{\mu} :
f'(0)=\frac{\mu}{\pi}(\lambda-1) \hbox{ and}\\
f' '(0)=\frac{\mu}{\pi}\biggl(a(1-|\lambda|^2)+\frac{\mu}{\pi}
(\lambda-1)^2-(1-{\lambda}^2)\biggr)\biggr\}.\end{multline*}
In the final section we graphically illustrate the region of variability
for several sets of parameters.
Keywords:
mathbb mathcal denote class non vanishing analytic functions unit disk mathbb bigg frac frac frac z bigg quad hbox mathbb fixed unit disk mathbb leq lambda overline mathbb shall determine region variability lambda log ranges class begin multline* mathcal lambda biggl mathcal frac lambda hbox frac biggl lambda frac lambda lambda biggr biggr end multline* final section graphically illustrate region variability several sets parameters
Affiliations des auteurs :
S. Ponnusamy 1 ; A. Vasudevarao 1 ; M. Vuorinen 2
@article{10_4064_cm116_1_3,
author = {S. Ponnusamy and A. Vasudevarao and M. Vuorinen},
title = {Region of variability for
spiral-like functions with respect to a boundary point},
journal = {Colloquium Mathematicum},
pages = {31--46},
publisher = {mathdoc},
volume = {116},
number = {1},
year = {2009},
doi = {10.4064/cm116-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-3/}
}
TY - JOUR AU - S. Ponnusamy AU - A. Vasudevarao AU - M. Vuorinen TI - Region of variability for spiral-like functions with respect to a boundary point JO - Colloquium Mathematicum PY - 2009 SP - 31 EP - 46 VL - 116 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-3/ DO - 10.4064/cm116-1-3 LA - en ID - 10_4064_cm116_1_3 ER -
%0 Journal Article %A S. Ponnusamy %A A. Vasudevarao %A M. Vuorinen %T Region of variability for spiral-like functions with respect to a boundary point %J Colloquium Mathematicum %D 2009 %P 31-46 %V 116 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-3/ %R 10.4064/cm116-1-3 %G en %F 10_4064_cm116_1_3
S. Ponnusamy; A. Vasudevarao; M. Vuorinen. Region of variability for spiral-like functions with respect to a boundary point. Colloquium Mathematicum, Tome 116 (2009) no. 1, pp. 31-46. doi: 10.4064/cm116-1-3
Cité par Sources :