Region of variability for spiral-like functions with respect to a boundary point
Colloquium Mathematicum, Tome 116 (2009) no. 1, pp. 31-46.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $\mu\in\mathbb C$ such that ${\rm Re\,}\mu>0$ let ${\mathcal F}_{\mu} $ denote the class of all non-vanishing analytic functions $f$ in the unit disk $\mathbb{D}$ with $f(0)=1$ and $$ {\rm Re} \bigg(\frac{2\pi}{\mu}\, \frac{zf'(z)}{f(z)}+ \frac{1+z}{1-z}\bigg ) >0 \quad\ \hbox{in ${\mathbb D}$}. $$ For any fixed $z_0$ in the unit disk, $a\in\mathbb{C}$ with $|a|\leq 1$ and $\lambda\in\overline{\mathbb{D}}$, we shall determine the region of variability $V(z_0,\lambda)$ for $\log f(z_0)$ when $f$ ranges over the class \begin{multline*} \mathcal{F}_{\mu}(\lambda) = \biggl\{ f\in{\mathcal F}_{\mu} : f'(0)=\frac{\mu}{\pi}(\lambda-1) \hbox{ and}\\ f' '(0)=\frac{\mu}{\pi}\biggl(a(1-|\lambda|^2)+\frac{\mu}{\pi} (\lambda-1)^2-(1-{\lambda}^2)\biggr)\biggr\}.\end{multline*} In the final section we graphically illustrate the region of variability for several sets of parameters.
DOI : 10.4064/cm116-1-3
Keywords: mathbb mathcal denote class non vanishing analytic functions unit disk mathbb bigg frac frac frac z bigg quad hbox mathbb fixed unit disk mathbb leq lambda overline mathbb shall determine region variability lambda log ranges class begin multline* mathcal lambda biggl mathcal frac lambda hbox frac biggl lambda frac lambda lambda biggr biggr end multline* final section graphically illustrate region variability several sets parameters

S. Ponnusamy 1 ; A. Vasudevarao 1 ; M. Vuorinen 2

1 Department of Mathematics Indian Institute of Technology Madras Chennai 600 036, India
2 Department of Mathematics FIN-20014 University of Turku, Finland
@article{10_4064_cm116_1_3,
     author = {S. Ponnusamy and A. Vasudevarao and M. Vuorinen},
     title = {Region of variability for
spiral-like functions with respect to a boundary point},
     journal = {Colloquium Mathematicum},
     pages = {31--46},
     publisher = {mathdoc},
     volume = {116},
     number = {1},
     year = {2009},
     doi = {10.4064/cm116-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-3/}
}
TY  - JOUR
AU  - S. Ponnusamy
AU  - A. Vasudevarao
AU  - M. Vuorinen
TI  - Region of variability for
spiral-like functions with respect to a boundary point
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 31
EP  - 46
VL  - 116
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-3/
DO  - 10.4064/cm116-1-3
LA  - en
ID  - 10_4064_cm116_1_3
ER  - 
%0 Journal Article
%A S. Ponnusamy
%A A. Vasudevarao
%A M. Vuorinen
%T Region of variability for
spiral-like functions with respect to a boundary point
%J Colloquium Mathematicum
%D 2009
%P 31-46
%V 116
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-3/
%R 10.4064/cm116-1-3
%G en
%F 10_4064_cm116_1_3
S. Ponnusamy; A. Vasudevarao; M. Vuorinen. Region of variability for
spiral-like functions with respect to a boundary point. Colloquium Mathematicum, Tome 116 (2009) no. 1, pp. 31-46. doi : 10.4064/cm116-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm116-1-3/

Cité par Sources :