An extension of distributional wavelet transform
Colloquium Mathematicum, Tome 115 (2009) no. 2, pp. 195-206.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct a new Boehmian space containing the space $\tilde{{\scr S}}^\prime (\mathbb{R}^n\times\mathbb{R}_+)$ and define the extended wavelet transform $\mathscr{W}$ of a new Boehmian as a tempered Boehmian. In analogy to the distributional wavelet transform, it is proved that the extended wavelet transform is linear, one-to-one, and continuous with respect to $\delta$-convergence as well as $\Delta$-convergence.
DOI : 10.4064/cm115-2-5
Keywords: construct boehmian space containing space tilde scr prime mathbb times mathbb define extended wavelet transform mathscr boehmian tempered boehmian analogy distributional wavelet transform proved extended wavelet transform linear one to one continuous respect delta convergence delta convergence

R. Roopkumar 1

1 Department of Mathematics Alagappa University Karaikudi 630 003, India
@article{10_4064_cm115_2_5,
     author = {R. Roopkumar},
     title = {An extension of distributional wavelet transform},
     journal = {Colloquium Mathematicum},
     pages = {195--206},
     publisher = {mathdoc},
     volume = {115},
     number = {2},
     year = {2009},
     doi = {10.4064/cm115-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm115-2-5/}
}
TY  - JOUR
AU  - R. Roopkumar
TI  - An extension of distributional wavelet transform
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 195
EP  - 206
VL  - 115
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm115-2-5/
DO  - 10.4064/cm115-2-5
LA  - en
ID  - 10_4064_cm115_2_5
ER  - 
%0 Journal Article
%A R. Roopkumar
%T An extension of distributional wavelet transform
%J Colloquium Mathematicum
%D 2009
%P 195-206
%V 115
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm115-2-5/
%R 10.4064/cm115-2-5
%G en
%F 10_4064_cm115_2_5
R. Roopkumar. An extension of distributional wavelet transform. Colloquium Mathematicum, Tome 115 (2009) no. 2, pp. 195-206. doi : 10.4064/cm115-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm115-2-5/

Cité par Sources :