An extension of distributional wavelet transform
Colloquium Mathematicum, Tome 115 (2009) no. 2, pp. 195-206
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct a new Boehmian space containing the space $\tilde{{\scr S}}^\prime (\mathbb{R}^n\times\mathbb{R}_+)$ and define the extended wavelet transform $\mathscr{W}$ of a new Boehmian as a tempered Boehmian. In analogy to the distributional wavelet transform, it is proved that the extended wavelet transform is linear, one-to-one, and continuous with respect to $\delta$-convergence as well as $\Delta$-convergence.
Keywords:
construct boehmian space containing space tilde scr prime mathbb times mathbb define extended wavelet transform mathscr boehmian tempered boehmian analogy distributional wavelet transform proved extended wavelet transform linear one to one continuous respect delta convergence delta convergence
Affiliations des auteurs :
R. Roopkumar 1
@article{10_4064_cm115_2_5,
author = {R. Roopkumar},
title = {An extension of distributional wavelet transform},
journal = {Colloquium Mathematicum},
pages = {195--206},
publisher = {mathdoc},
volume = {115},
number = {2},
year = {2009},
doi = {10.4064/cm115-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm115-2-5/}
}
R. Roopkumar. An extension of distributional wavelet transform. Colloquium Mathematicum, Tome 115 (2009) no. 2, pp. 195-206. doi: 10.4064/cm115-2-5
Cité par Sources :