On area and side lengths of triangles in normed planes
Colloquium Mathematicum, Tome 115 (2009) no. 1, pp. 101-112
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mathcal M^d$ be a $d$-dimensional normed space with norm $\|\,\cdot\, \|$ and let $B$ be the unit ball in $\mathcal M^d.$ Let us fix a Lebesgue measure $V_B$ in $\mathcal M^d$ with
$V_B(B)=1.$ This measure will play the role of the volume in $\mathcal M^d$. We consider an arbitrary simplex $T$ in $\mathcal M^d$ with prescribed edge lengths. For the case $d=2$, sharp upper and lower bounds of $V_B(T)$ are determined. For $d\ge 3$ it is noticed that the tight lower bound of $V_B(T)$ is zero.
Keywords:
mathcal d dimensional normed space norm cdot unit ball mathcal fix lebesgue measure mathcal measure play role volume mathcal consider arbitrary simplex mathcal prescribed edge lengths sharp upper lower bounds determined noticed tight lower bound zero
Affiliations des auteurs :
Gennadiy Averkov 1 ; Horst Martini 2
@article{10_4064_cm115_1_9,
author = {Gennadiy Averkov and Horst Martini},
title = {On area and side lengths of triangles in normed planes},
journal = {Colloquium Mathematicum},
pages = {101--112},
publisher = {mathdoc},
volume = {115},
number = {1},
year = {2009},
doi = {10.4064/cm115-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-9/}
}
TY - JOUR AU - Gennadiy Averkov AU - Horst Martini TI - On area and side lengths of triangles in normed planes JO - Colloquium Mathematicum PY - 2009 SP - 101 EP - 112 VL - 115 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-9/ DO - 10.4064/cm115-1-9 LA - en ID - 10_4064_cm115_1_9 ER -
Gennadiy Averkov; Horst Martini. On area and side lengths of triangles in normed planes. Colloquium Mathematicum, Tome 115 (2009) no. 1, pp. 101-112. doi: 10.4064/cm115-1-9
Cité par Sources :