An inconsistency equation involving means
Colloquium Mathematicum, Tome 115 (2009) no. 1, pp. 87-99.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that any quasi-arithmetic mean $A_{\varphi}$ and any non-quasi-arithmetic mean $M$ (reasonably regular) are inconsistent in the sense that the only solutions $f$ of both equations $$ f(M(x,y)) = A_{\varphi}(f(x), f(y)) $$ and $$ f(A_{\varphi}(x,y)) = M(f(x), f(y)) $$ are the constant ones.
DOI : 10.4064/cm115-1-8
Keywords: quasi arithmetic mean varphi non quasi arithmetic mean reasonably regular inconsistent sense only solutions equations y varphi varphi constant

Roman Ger 1 ; Tomasz Kochanek 1

1 Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland
@article{10_4064_cm115_1_8,
     author = {Roman Ger and Tomasz Kochanek},
     title = {An inconsistency equation involving means},
     journal = {Colloquium Mathematicum},
     pages = {87--99},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {2009},
     doi = {10.4064/cm115-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-8/}
}
TY  - JOUR
AU  - Roman Ger
AU  - Tomasz Kochanek
TI  - An inconsistency equation involving means
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 87
EP  - 99
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-8/
DO  - 10.4064/cm115-1-8
LA  - en
ID  - 10_4064_cm115_1_8
ER  - 
%0 Journal Article
%A Roman Ger
%A Tomasz Kochanek
%T An inconsistency equation involving means
%J Colloquium Mathematicum
%D 2009
%P 87-99
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-8/
%R 10.4064/cm115-1-8
%G en
%F 10_4064_cm115_1_8
Roman Ger; Tomasz Kochanek. An inconsistency equation involving means. Colloquium Mathematicum, Tome 115 (2009) no. 1, pp. 87-99. doi : 10.4064/cm115-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-8/

Cité par Sources :