Multiple conjugate functions and multiplicative
Lipschitz classes
Colloquium Mathematicum, Tome 115 (2009) no. 1, pp. 21-32
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We extend the classical theorems of I. I. Privalov and A.
Zygmund from single to multiple conjugate functions in terms of the
multiplicative modulus of continuity. A remarkable corollary
is that if a function $f$
belongs to the multiplicative Lipschitz class
$\mathop{\rm Lip}(\alpha_1, \ldots, \alpha_N)$
for some $0\alpha_1, \ldots, \alpha_N1$ and its marginal functions
satisfy $f(\cdot, x_2, \ldots, x_N) \in \mathop{\rm Lip} \beta_1, \ldots,
f(x_1, \ldots, x_{N-1}, \cdot)\in \mathop{\rm Lip}
\beta_N$ for some $0\beta_1, \ldots, \beta_N 1$ uniformly in the
indicated
variables $x_{l}$, $1\le l \le N$, then
$\widetilde f^{(\eta_1, \ldots, \eta_N)} \in
\mathop{\rm Lip}
(\alpha_1, \ldots, \alpha_N)$ for each choice of $(\eta_1, \ldots, \eta_N)$
with $\eta_{l} = 0$ or $1$ for $1\le l \le N$.
Keywords:
extend classical theorems privalov zygmund single multiple conjugate functions terms multiplicative modulus continuity remarkable corollary function belongs multiplicative lipschitz class mathop lip alpha ldots alpha alpha ldots alpha its marginal functions satisfy cdot ldots mathop lip beta ldots ldots n cdot mathop lip beta beta ldots beta uniformly indicated variables widetilde eta ldots eta mathop lip alpha ldots alpha each choice eta ldots eta eta
Affiliations des auteurs :
Ferenc Móricz 1
@article{10_4064_cm115_1_3,
author = {Ferenc M\'oricz},
title = {Multiple conjugate functions and multiplicative
{Lipschitz} classes},
journal = {Colloquium Mathematicum},
pages = {21--32},
publisher = {mathdoc},
volume = {115},
number = {1},
year = {2009},
doi = {10.4064/cm115-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-3/}
}
TY - JOUR AU - Ferenc Móricz TI - Multiple conjugate functions and multiplicative Lipschitz classes JO - Colloquium Mathematicum PY - 2009 SP - 21 EP - 32 VL - 115 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-3/ DO - 10.4064/cm115-1-3 LA - en ID - 10_4064_cm115_1_3 ER -
Ferenc Móricz. Multiple conjugate functions and multiplicative Lipschitz classes. Colloquium Mathematicum, Tome 115 (2009) no. 1, pp. 21-32. doi: 10.4064/cm115-1-3
Cité par Sources :