Multiple conjugate functions and multiplicative Lipschitz classes
Colloquium Mathematicum, Tome 115 (2009) no. 1, pp. 21-32.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We extend the classical theorems of I. I. Privalov and A. Zygmund from single to multiple conjugate functions in terms of the multiplicative modulus of continuity. A remarkable corollary is that if a function $f$ belongs to the multiplicative Lipschitz class $\mathop{\rm Lip}(\alpha_1, \ldots, \alpha_N)$ for some $0\alpha_1, \ldots, \alpha_N1$ and its marginal functions satisfy $f(\cdot, x_2, \ldots, x_N) \in \mathop{\rm Lip} \beta_1, \ldots, f(x_1, \ldots, x_{N-1}, \cdot)\in \mathop{\rm Lip} \beta_N$ for some $0\beta_1, \ldots, \beta_N 1$ uniformly in the indicated variables $x_{l}$, $1\le l \le N$, then $\widetilde f^{(\eta_1, \ldots, \eta_N)} \in \mathop{\rm Lip} (\alpha_1, \ldots, \alpha_N)$ for each choice of $(\eta_1, \ldots, \eta_N)$ with $\eta_{l} = 0$ or $1$ for $1\le l \le N$.
DOI : 10.4064/cm115-1-3
Keywords: extend classical theorems privalov zygmund single multiple conjugate functions terms multiplicative modulus continuity remarkable corollary function belongs multiplicative lipschitz class mathop lip alpha ldots alpha alpha ldots alpha its marginal functions satisfy cdot ldots mathop lip beta ldots ldots n cdot mathop lip beta beta ldots beta uniformly indicated variables widetilde eta ldots eta mathop lip alpha ldots alpha each choice eta ldots eta eta

Ferenc Móricz 1

1 Bolyai Institute University of Szeged Aradi vértanúk tere 1 6720 Szeged, Hungary
@article{10_4064_cm115_1_3,
     author = {Ferenc M\'oricz},
     title = {Multiple conjugate functions and multiplicative
 {Lipschitz} classes},
     journal = {Colloquium Mathematicum},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {115},
     number = {1},
     year = {2009},
     doi = {10.4064/cm115-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-3/}
}
TY  - JOUR
AU  - Ferenc Móricz
TI  - Multiple conjugate functions and multiplicative
 Lipschitz classes
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 21
EP  - 32
VL  - 115
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-3/
DO  - 10.4064/cm115-1-3
LA  - en
ID  - 10_4064_cm115_1_3
ER  - 
%0 Journal Article
%A Ferenc Móricz
%T Multiple conjugate functions and multiplicative
 Lipschitz classes
%J Colloquium Mathematicum
%D 2009
%P 21-32
%V 115
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-3/
%R 10.4064/cm115-1-3
%G en
%F 10_4064_cm115_1_3
Ferenc Móricz. Multiple conjugate functions and multiplicative
 Lipschitz classes. Colloquium Mathematicum, Tome 115 (2009) no. 1, pp. 21-32. doi : 10.4064/cm115-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-3/

Cité par Sources :