Infinite measure preserving flows with infinite ergodic index
Colloquium Mathematicum, Tome 115 (2009) no. 1, pp. 13-19
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct a rank-one infinite measure preserving flow $(T_r)_{r\in\Bbb R}$ such that
for each $p>0$, the “diagonal” flow
$({T_r\times\cdots\times T_r})_{r\in\Bbb R}\,(p\,{\rm times})$
on the product space is ergodic.
Keywords:
construct rank one infinite measure preserving flow bbb each diagonal flow times cdots times bbb times product space ergodic
Affiliations des auteurs :
Alexandre I. Danilenko 1 ; Anton V. Solomko 2
@article{10_4064_cm115_1_2,
author = {Alexandre I. Danilenko and Anton V. Solomko},
title = {Infinite measure preserving flows with infinite ergodic index},
journal = {Colloquium Mathematicum},
pages = {13--19},
publisher = {mathdoc},
volume = {115},
number = {1},
year = {2009},
doi = {10.4064/cm115-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-2/}
}
TY - JOUR AU - Alexandre I. Danilenko AU - Anton V. Solomko TI - Infinite measure preserving flows with infinite ergodic index JO - Colloquium Mathematicum PY - 2009 SP - 13 EP - 19 VL - 115 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-2/ DO - 10.4064/cm115-1-2 LA - en ID - 10_4064_cm115_1_2 ER -
%0 Journal Article %A Alexandre I. Danilenko %A Anton V. Solomko %T Infinite measure preserving flows with infinite ergodic index %J Colloquium Mathematicum %D 2009 %P 13-19 %V 115 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm115-1-2/ %R 10.4064/cm115-1-2 %G en %F 10_4064_cm115_1_2
Alexandre I. Danilenko; Anton V. Solomko. Infinite measure preserving flows with infinite ergodic index. Colloquium Mathematicum, Tome 115 (2009) no. 1, pp. 13-19. doi: 10.4064/cm115-1-2
Cité par Sources :