Existence and construction of two-dimensional invariant subspaces for pairs of rotations
Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 203-211.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

By a rotation in a Euclidean space $V$ of even dimension we mean an orthogonal linear operator on $V$ which is an orthogonal direct sum of rotations in 2-dimensional linear subspaces of $V$ by a common angle $\alpha \in [0,\pi ]$. We present a criterion for the existence of a 2-dimensional subspace of $V$ which is invariant under a given pair of rotations, in terms of the vanishing of a determinant associated with that pair. This criterion is constructive, whenever it is satisfied. It is also used to prove that every pair of rotations in $V$ has a 2-dimensional invariant subspace if and only if the dimension of $V$ is congruent to 2 modulo 4.
DOI : 10.4064/cm114-2-4
Keywords: rotation euclidean space even dimension mean orthogonal linear operator which orthogonal direct sum rotations dimensional linear subspaces common angle alpha present criterion existence dimensional subspace which invariant under given pair rotations terms vanishing determinant associated pair criterion constructive whenever satisfied prove every pair rotations has dimensional invariant subspace only dimension congruent modulo

Ernst Dieterich 1

1 Uppsala universitet Box 480 SE-751 06 Uppsala, Sweden
@article{10_4064_cm114_2_4,
     author = {Ernst Dieterich},
     title = {Existence and construction of two-dimensional
 invariant subspaces for pairs of rotations},
     journal = {Colloquium Mathematicum},
     pages = {203--211},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {2009},
     doi = {10.4064/cm114-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-4/}
}
TY  - JOUR
AU  - Ernst Dieterich
TI  - Existence and construction of two-dimensional
 invariant subspaces for pairs of rotations
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 203
EP  - 211
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-4/
DO  - 10.4064/cm114-2-4
LA  - en
ID  - 10_4064_cm114_2_4
ER  - 
%0 Journal Article
%A Ernst Dieterich
%T Existence and construction of two-dimensional
 invariant subspaces for pairs of rotations
%J Colloquium Mathematicum
%D 2009
%P 203-211
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-4/
%R 10.4064/cm114-2-4
%G en
%F 10_4064_cm114_2_4
Ernst Dieterich. Existence and construction of two-dimensional
 invariant subspaces for pairs of rotations. Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 203-211. doi : 10.4064/cm114-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-4/

Cité par Sources :