Existence and construction of two-dimensional
invariant subspaces for pairs of rotations
Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 203-211
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
By a rotation in a Euclidean space $V$ of even dimension we mean an orthogonal linear operator on $V$ which is an orthogonal direct sum of rotations in 2-dimensional linear subspaces of $V$ by a common angle $\alpha \in [0,\pi ]$. We present a criterion for the existence of a 2-dimensional subspace of $V$ which is invariant under a given pair of rotations, in terms of the vanishing of a determinant associated with that pair. This criterion is constructive, whenever it is satisfied. It is also used to prove that every pair of rotations in $V$ has a 2-dimensional invariant subspace if and only if the dimension of $V$ is congruent to 2 modulo 4.
Keywords:
rotation euclidean space even dimension mean orthogonal linear operator which orthogonal direct sum rotations dimensional linear subspaces common angle alpha present criterion existence dimensional subspace which invariant under given pair rotations terms vanishing determinant associated pair criterion constructive whenever satisfied prove every pair rotations has dimensional invariant subspace only dimension congruent modulo
Affiliations des auteurs :
Ernst Dieterich 1
@article{10_4064_cm114_2_4,
author = {Ernst Dieterich},
title = {Existence and construction of two-dimensional
invariant subspaces for pairs of rotations},
journal = {Colloquium Mathematicum},
pages = {203--211},
year = {2009},
volume = {114},
number = {2},
doi = {10.4064/cm114-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-4/}
}
TY - JOUR AU - Ernst Dieterich TI - Existence and construction of two-dimensional invariant subspaces for pairs of rotations JO - Colloquium Mathematicum PY - 2009 SP - 203 EP - 211 VL - 114 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-4/ DO - 10.4064/cm114-2-4 LA - en ID - 10_4064_cm114_2_4 ER -
Ernst Dieterich. Existence and construction of two-dimensional invariant subspaces for pairs of rotations. Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 203-211. doi: 10.4064/cm114-2-4
Cité par Sources :