Associated primes and primal decomposition of modules over commutative rings
Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 191-202.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $R$ be a commutative ring and let $M$ be an $R$-module. The aim of this paper is to establish an efficient decomposition of a proper submodule $N$ of $M$ as an intersection of primal submodules. We prove the existence of a canonical primal decomposition, $N=\bigcap_{\mathfrak{p}} N_ {(\mathfrak{p})}$, where the intersection is taken over the isolated components $N_{(\mathfrak{p})}$ of $N$ that are primal submodules having distinct and incomparable adjoint prime ideals $\mathfrak{p}$. Using this decomposition, we prove that for $\mathfrak{p}\in \mathop{\rm Supp}(M//N)$, the submodule $N$ is an intersection of $\mathfrak{p}$-primal submodules if and only if the elements of $R\setminus \mathfrak{p}$ are prime to $N$. Also, it is shown that $M$ is an arithmetical $R$-module if and only if every primal submodule of $M$ is irreducible. Finally, we determine conditions for the canonical primal decomposition to be irredundant or residually maximal, and for the unique decomposition of $N$ as an irredundant intersection of isolated components.
DOI : 10.4064/cm114-2-3
Keywords: commutative ring r module paper establish efficient decomposition proper submodule intersection primal submodules prove existence canonical primal decomposition bigcap mathfrak mathfrak where intersection taken isolated components mathfrak primal submodules having distinct incomparable adjoint prime ideals mathfrak using decomposition prove mathfrak mathop supp submodule nbsp intersection mathfrak primal submodules only elements setminus mathfrak prime nbsp shown arithmetical r module only every primal submodule irreducible finally determine conditions canonical primal decomposition irredundant residually maximal unique decomposition irredundant intersection isolated components

Ahmad Khojali 1 ; Reza Naghipour 2

1 Department of Mathematics University of Tabriz Tabriz 51666-16471, Iran
2 Department of Mathematics University of Tabriz Tabriz 51666-16471, Iran and School of Mathematics Institute for Studies in Theoretical Physics and Mathematics (IPM) P.O. Box 19395-5746, Tehran, Iran
@article{10_4064_cm114_2_3,
     author = {Ahmad Khojali and Reza Naghipour},
     title = {Associated primes and primal decomposition of modules over commutative rings},
     journal = {Colloquium Mathematicum},
     pages = {191--202},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {2009},
     doi = {10.4064/cm114-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-3/}
}
TY  - JOUR
AU  - Ahmad Khojali
AU  - Reza Naghipour
TI  - Associated primes and primal decomposition of modules over commutative rings
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 191
EP  - 202
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-3/
DO  - 10.4064/cm114-2-3
LA  - en
ID  - 10_4064_cm114_2_3
ER  - 
%0 Journal Article
%A Ahmad Khojali
%A Reza Naghipour
%T Associated primes and primal decomposition of modules over commutative rings
%J Colloquium Mathematicum
%D 2009
%P 191-202
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-3/
%R 10.4064/cm114-2-3
%G en
%F 10_4064_cm114_2_3
Ahmad Khojali; Reza Naghipour. Associated primes and primal decomposition of modules over commutative rings. Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 191-202. doi : 10.4064/cm114-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-3/

Cité par Sources :