Associated primes and primal decomposition of modules over commutative rings
Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 191-202
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $R$ be a commutative ring and let $M$ be an $R$-module. The aim
of this paper is to establish an efficient decomposition of a proper
submodule $N$ of $M$ as an intersection of primal submodules. We
prove the existence of a canonical primal
decomposition, $N=\bigcap_{\mathfrak{p}} N_ {(\mathfrak{p})}$, where the
intersection is taken over the isolated components $N_{(\mathfrak{p})}$
of $N$ that are primal submodules having distinct and incomparable
adjoint prime ideals $\mathfrak{p}$. Using this
decomposition, we prove that for $\mathfrak{p}\in \mathop{\rm Supp}(M//N)$, the
submodule $N$ is an intersection of $\mathfrak{p}$-primal submodules if
and only if the elements of $R\setminus \mathfrak{p}$ are prime to $N$.
Also, it is shown that $M$ is an arithmetical $R$-module if and only
if every primal submodule of $M$ is irreducible. Finally, we
determine conditions for the canonical primal decomposition to be
irredundant or residually maximal, and for the unique decomposition of
$N$ as an irredundant intersection of isolated components.
Keywords:
commutative ring r module paper establish efficient decomposition proper submodule intersection primal submodules prove existence canonical primal decomposition bigcap mathfrak mathfrak where intersection taken isolated components mathfrak primal submodules having distinct incomparable adjoint prime ideals mathfrak using decomposition prove mathfrak mathop supp submodule nbsp intersection mathfrak primal submodules only elements setminus mathfrak prime nbsp shown arithmetical r module only every primal submodule irreducible finally determine conditions canonical primal decomposition irredundant residually maximal unique decomposition irredundant intersection isolated components
Affiliations des auteurs :
Ahmad Khojali 1 ; Reza Naghipour 2
@article{10_4064_cm114_2_3,
author = {Ahmad Khojali and Reza Naghipour},
title = {Associated primes and primal decomposition of modules over commutative rings},
journal = {Colloquium Mathematicum},
pages = {191--202},
year = {2009},
volume = {114},
number = {2},
doi = {10.4064/cm114-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-3/}
}
TY - JOUR AU - Ahmad Khojali AU - Reza Naghipour TI - Associated primes and primal decomposition of modules over commutative rings JO - Colloquium Mathematicum PY - 2009 SP - 191 EP - 202 VL - 114 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-3/ DO - 10.4064/cm114-2-3 LA - en ID - 10_4064_cm114_2_3 ER -
Ahmad Khojali; Reza Naghipour. Associated primes and primal decomposition of modules over commutative rings. Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 191-202. doi: 10.4064/cm114-2-3
Cité par Sources :