Compactness and convergence of set-valued measures
Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 177-189
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove criteria for relative compactness in the space of set-valued measures whose values are compact convex sets in a Banach space, and we generalize to set-valued measures the famous theorem of Dieudonné on convergence of real non-negative regular measures.
Keywords:
prove criteria relative compactness space set valued measures whose values compact convex sets banach space generalize set valued measures famous theorem dieudonn convergence real non negative regular measures
Affiliations des auteurs :
Kenny Koffi Siggini 1
@article{10_4064_cm114_2_2,
author = {Kenny Koffi Siggini},
title = {Compactness and convergence of set-valued measures},
journal = {Colloquium Mathematicum},
pages = {177--189},
publisher = {mathdoc},
volume = {114},
number = {2},
year = {2009},
doi = {10.4064/cm114-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-2/}
}
Kenny Koffi Siggini. Compactness and convergence of set-valued measures. Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 177-189. doi: 10.4064/cm114-2-2
Cité par Sources :