Rings whose modules are finitely generated over their endomorphism rings
Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 155-176.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A module $M$ is called finendo (cofinendo) if $M$ is finitely generated (respectively, finitely cogenerated) over its endomorphism ring. It is proved that if $R$ is any hereditary ring, then the following conditions are equivalent: (a) Every right $R$-module is finendo; (b) Every left $R$-module is cofinendo; (c) $R$ is left pure semisimple and every finitely generated indecomposable left $R$-module is cofinendo; (d) $R$ is left pure semisimple and every finitely generated indecomposable left $R$-module is finendo; (e) $R$ is of finite representation type. Moreover, if $R$ is an arbitrary ring, then (a)$\Rightarrow $(b)$\Leftrightarrow $(c), and any ring $R$ satisfying (c) has a right Morita duality.
DOI : 10.4064/cm114-2-1
Keywords: module called finendo cofinendo finitely generated respectively finitely cogenerated its endomorphism ring proved hereditary ring following conditions equivalent nbsp every right r module finendo nbsp every r module cofinendo nbsp pure semisimple every finitely generated indecomposable r module cofinendo nbsp pure semisimple every finitely generated indecomposable r module finendo nbsp finite representation type moreover arbitrary ring rightarrow leftrightarrow ring satisfying has right morita duality

Nguyen Viet Dung 1 ; José Luis García 2

1 Department of Mathematics Ohio University-Zanesville Zanesville, OH 43701, U.S.A.
2 Department of Mathematics University of Murcia 30100 Espinardo, Murcia, Spain
@article{10_4064_cm114_2_1,
     author = {Nguyen Viet Dung and Jos\'e Luis Garc{\'\i}a},
     title = {Rings whose modules are finitely generated
 over their endomorphism rings},
     journal = {Colloquium Mathematicum},
     pages = {155--176},
     publisher = {mathdoc},
     volume = {114},
     number = {2},
     year = {2009},
     doi = {10.4064/cm114-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-1/}
}
TY  - JOUR
AU  - Nguyen Viet Dung
AU  - José Luis García
TI  - Rings whose modules are finitely generated
 over their endomorphism rings
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 155
EP  - 176
VL  - 114
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-1/
DO  - 10.4064/cm114-2-1
LA  - en
ID  - 10_4064_cm114_2_1
ER  - 
%0 Journal Article
%A Nguyen Viet Dung
%A José Luis García
%T Rings whose modules are finitely generated
 over their endomorphism rings
%J Colloquium Mathematicum
%D 2009
%P 155-176
%V 114
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-1/
%R 10.4064/cm114-2-1
%G en
%F 10_4064_cm114_2_1
Nguyen Viet Dung; José Luis García. Rings whose modules are finitely generated
 over their endomorphism rings. Colloquium Mathematicum, Tome 114 (2009) no. 2, pp. 155-176. doi : 10.4064/cm114-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm114-2-1/

Cité par Sources :