Functions having the Darboux property and satisfying some functional equation
Colloquium Mathematicum, Tome 114 (2009) no. 1, pp. 113-118.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a real linear topological space. We characterize solutions $f:X\rightarrow\mathbb{R}$ and $M:\mathbb{R}\rightarrow \mathbb{R}$ of the equation $f(x+M(f(x))y)=f(x)f(y)$ under the assumption that $f$ and $M$ have the Darboux property.
DOI : 10.4064/cm114-1-9
Keywords: real linear topological space characterize solutions rightarrow mathbb mathbb rightarrow mathbb equation f y under assumption have darboux property

Eliza Jab/lońska 1

1 Department of Mathematics Rzeszów University of Technology W. Pola 2 35-959 Rzeszów, Poland
@article{10_4064_cm114_1_9,
     author = {Eliza Jab/lo\'nska},
     title = {Functions having the {Darboux} property and satisfying some functional equation},
     journal = {Colloquium Mathematicum},
     pages = {113--118},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2009},
     doi = {10.4064/cm114-1-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm114-1-9/}
}
TY  - JOUR
AU  - Eliza Jab/lońska
TI  - Functions having the Darboux property and satisfying some functional equation
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 113
EP  - 118
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm114-1-9/
DO  - 10.4064/cm114-1-9
LA  - en
ID  - 10_4064_cm114_1_9
ER  - 
%0 Journal Article
%A Eliza Jab/lońska
%T Functions having the Darboux property and satisfying some functional equation
%J Colloquium Mathematicum
%D 2009
%P 113-118
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm114-1-9/
%R 10.4064/cm114-1-9
%G en
%F 10_4064_cm114_1_9
Eliza Jab/lońska. Functions having the Darboux property and satisfying some functional equation. Colloquium Mathematicum, Tome 114 (2009) no. 1, pp. 113-118. doi : 10.4064/cm114-1-9. http://geodesic.mathdoc.fr/articles/10.4064/cm114-1-9/

Cité par Sources :