Affine liftings of torsion-free connections to Weil bundles
Colloquium Mathematicum, Tome 114 (2009) no. 1, pp. 1-8.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper contains a classification of all affine liftings of torsion-free linear connections on $n$-dimensional manifolds to any linear connections on Weil bundles under the condition that $n\ge 3$.
DOI : 10.4064/cm114-1-1
Keywords: paper contains classification affine liftings torsion free linear connections n dimensional manifolds linear connections weil bundles under condition

Jacek D/ebecki 1

1 Instytut Matematyki Uniwersytet Jagiello/nski Reymonta 4 30-059 Krak/ow, Poland
@article{10_4064_cm114_1_1,
     author = {Jacek D/ebecki},
     title = {Affine liftings of torsion-free connections
 to {Weil} bundles},
     journal = {Colloquium Mathematicum},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {114},
     number = {1},
     year = {2009},
     doi = {10.4064/cm114-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm114-1-1/}
}
TY  - JOUR
AU  - Jacek D/ebecki
TI  - Affine liftings of torsion-free connections
 to Weil bundles
JO  - Colloquium Mathematicum
PY  - 2009
SP  - 1
EP  - 8
VL  - 114
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm114-1-1/
DO  - 10.4064/cm114-1-1
LA  - en
ID  - 10_4064_cm114_1_1
ER  - 
%0 Journal Article
%A Jacek D/ebecki
%T Affine liftings of torsion-free connections
 to Weil bundles
%J Colloquium Mathematicum
%D 2009
%P 1-8
%V 114
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm114-1-1/
%R 10.4064/cm114-1-1
%G en
%F 10_4064_cm114_1_1
Jacek D/ebecki. Affine liftings of torsion-free connections
 to Weil bundles. Colloquium Mathematicum, Tome 114 (2009) no. 1, pp. 1-8. doi : 10.4064/cm114-1-1. http://geodesic.mathdoc.fr/articles/10.4064/cm114-1-1/

Cité par Sources :