On the long-time behaviour of solutions of the $p$-Laplacian parabolicsystem
Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 267-278
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Convergence of global solutions to stationary solutions for a class of degenerate parabolic systems related to the $p$-Laplacian operator is proved. A similar result is obtained for a variable exponent $p$. In the case of $p$ constant, the convergence is proved to be ${\mathcal{C}}^1_{\rm loc}$, and in the variable exponent case, $L^2$ and $W^{1,p(x)}$-weak.
Keywords:
convergence global solutions stationary solutions class degenerate parabolic systems related p laplacian operator proved similar result obtained variable exponent constant convergence proved mathcal loc variable exponent weak
Affiliations des auteurs :
Paweł Goldstein 1
@article{10_4064_cm113_2_8,
author = {Pawe{\l} Goldstein},
title = {On the long-time behaviour of solutions of the $p${-Laplacian} parabolicsystem},
journal = {Colloquium Mathematicum},
pages = {267--278},
publisher = {mathdoc},
volume = {113},
number = {2},
year = {2008},
doi = {10.4064/cm113-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-8/}
}
TY - JOUR AU - Paweł Goldstein TI - On the long-time behaviour of solutions of the $p$-Laplacian parabolicsystem JO - Colloquium Mathematicum PY - 2008 SP - 267 EP - 278 VL - 113 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-8/ DO - 10.4064/cm113-2-8 LA - en ID - 10_4064_cm113_2_8 ER -
Paweł Goldstein. On the long-time behaviour of solutions of the $p$-Laplacian parabolicsystem. Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 267-278. doi: 10.4064/cm113-2-8
Cité par Sources :