A note on optimal probability lower bounds for centered random variables
Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 231-240.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We obtain lower bounds for ${\mathbb P}(\xi\geq 0)$ and ${\mathbb P}({\xi> 0})$ under assumptions on the moments of a centered random variable $\xi$. The estimates obtained are shown to be optimal and improve results from the literature. They are then applied to obtain probability lower bounds for second order Rademacher chaos.
DOI : 10.4064/cm113-2-5
Keywords: obtain lower bounds mathbb geq mathbb under assumptions moments centered random variable estimates obtained shown optimal improve results literature applied obtain probability lower bounds second order rademacher chaos

Mark Veraar 1

1 Institut für Analysis Universität Karlsruhe (TH) D-76128 Karlsruhe, Germany
@article{10_4064_cm113_2_5,
     author = {Mark Veraar},
     title = {A note on optimal probability lower
bounds for centered random variables},
     journal = {Colloquium Mathematicum},
     pages = {231--240},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2008},
     doi = {10.4064/cm113-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-5/}
}
TY  - JOUR
AU  - Mark Veraar
TI  - A note on optimal probability lower
bounds for centered random variables
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 231
EP  - 240
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-5/
DO  - 10.4064/cm113-2-5
LA  - en
ID  - 10_4064_cm113_2_5
ER  - 
%0 Journal Article
%A Mark Veraar
%T A note on optimal probability lower
bounds for centered random variables
%J Colloquium Mathematicum
%D 2008
%P 231-240
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-5/
%R 10.4064/cm113-2-5
%G en
%F 10_4064_cm113_2_5
Mark Veraar. A note on optimal probability lower
bounds for centered random variables. Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 231-240. doi : 10.4064/cm113-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-5/

Cité par Sources :