Characterizing metric
spaces whose hyperspaces are homeomorphic to $\ell _2$
Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 223-229
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that the hyperspace ${\rm Cld}_{\rm H}(X)$ (resp. ${\rm Bdd}_{\rm H}(X)$)
of non-empty closed (resp. closed and bounded)
subsets of a metric space $(X,d)$ is homeomorphic
to $\ell_2$ if and only if the completion $\overline X$ of $X$
is connected and locally connected, $X$ is topologically complete
and nowhere locally compact, and each subset
(resp. each bounded subset) of $X$ is totally bounded.
Keywords:
shown hyperspace cld resp bdd non empty closed resp closed bounded subsets metric space homeomorphic ell only completion overline connected locally connected topologically complete nowhere locally compact each subset resp each bounded subset totally bounded
Affiliations des auteurs :
T. Banakh 1 ; R. Voytsitskyy 2
@article{10_4064_cm113_2_4,
author = {T. Banakh and R. Voytsitskyy},
title = {Characterizing metric
spaces whose hyperspaces are homeomorphic to $\ell _2$},
journal = {Colloquium Mathematicum},
pages = {223--229},
publisher = {mathdoc},
volume = {113},
number = {2},
year = {2008},
doi = {10.4064/cm113-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-4/}
}
TY - JOUR AU - T. Banakh AU - R. Voytsitskyy TI - Characterizing metric spaces whose hyperspaces are homeomorphic to $\ell _2$ JO - Colloquium Mathematicum PY - 2008 SP - 223 EP - 229 VL - 113 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-4/ DO - 10.4064/cm113-2-4 LA - en ID - 10_4064_cm113_2_4 ER -
%0 Journal Article %A T. Banakh %A R. Voytsitskyy %T Characterizing metric spaces whose hyperspaces are homeomorphic to $\ell _2$ %J Colloquium Mathematicum %D 2008 %P 223-229 %V 113 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-4/ %R 10.4064/cm113-2-4 %G en %F 10_4064_cm113_2_4
T. Banakh; R. Voytsitskyy. Characterizing metric spaces whose hyperspaces are homeomorphic to $\ell _2$. Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 223-229. doi: 10.4064/cm113-2-4
Cité par Sources :