Characterizing metric spaces whose hyperspaces are homeomorphic to $\ell _2$
Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 223-229.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that the hyperspace ${\rm Cld}_{\rm H}(X)$ (resp. ${\rm Bdd}_{\rm H}(X)$) of non-empty closed (resp. closed and bounded) subsets of a metric space $(X,d)$ is homeomorphic to $\ell_2$ if and only if the completion $\overline X$ of $X$ is connected and locally connected, $X$ is topologically complete and nowhere locally compact, and each subset (resp. each bounded subset) of $X$ is totally bounded.
DOI : 10.4064/cm113-2-4
Keywords: shown hyperspace cld resp bdd non empty closed resp closed bounded subsets metric space homeomorphic ell only completion overline connected locally connected topologically complete nowhere locally compact each subset resp each bounded subset totally bounded

T. Banakh 1 ; R. Voytsitskyy 2

1 Instytut Matematyki Akademia Świ/etokrzyska Kielce, Poland and Department of Mathematics Ivan Franko Lviv National University Lviv, Ukraine
2 Department of Mathematics Ivan Franko Lviv National University Lviv, Ukraine
@article{10_4064_cm113_2_4,
     author = {T. Banakh and R. Voytsitskyy},
     title = {Characterizing metric
spaces whose hyperspaces are homeomorphic to  $\ell _2$},
     journal = {Colloquium Mathematicum},
     pages = {223--229},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2008},
     doi = {10.4064/cm113-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-4/}
}
TY  - JOUR
AU  - T. Banakh
AU  - R. Voytsitskyy
TI  - Characterizing metric
spaces whose hyperspaces are homeomorphic to  $\ell _2$
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 223
EP  - 229
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-4/
DO  - 10.4064/cm113-2-4
LA  - en
ID  - 10_4064_cm113_2_4
ER  - 
%0 Journal Article
%A T. Banakh
%A R. Voytsitskyy
%T Characterizing metric
spaces whose hyperspaces are homeomorphic to  $\ell _2$
%J Colloquium Mathematicum
%D 2008
%P 223-229
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-4/
%R 10.4064/cm113-2-4
%G en
%F 10_4064_cm113_2_4
T. Banakh; R. Voytsitskyy. Characterizing metric
spaces whose hyperspaces are homeomorphic to  $\ell _2$. Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 223-229. doi : 10.4064/cm113-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-4/

Cité par Sources :