Bochner's formula for harmonic maps from Finsler manifolds
Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 185-190.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\phi :(M,F)\rightarrow (N,h)$ be a harmonic map from a Finsler manifold to any Riemannian manifold. We establish Bochner's formula for the energy density of $\phi $ and maximum principle on Finsler manifolds, from which we deduce some properties of harmonic maps $\phi $.
DOI : 10.4064/cm113-2-2
Keywords: phi rightarrow harmonic map finsler manifold riemannian manifold establish bochners formula energy density phi maximum principle finsler manifolds which deduce properties harmonic maps phi

Jintang Li 1

1 Department of Mathematics Xiamen University 361005 Xiamen, Fujian, China
@article{10_4064_cm113_2_2,
     author = {Jintang Li},
     title = {Bochner's formula for harmonic maps
 from {Finsler} manifolds},
     journal = {Colloquium Mathematicum},
     pages = {185--190},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2008},
     doi = {10.4064/cm113-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-2/}
}
TY  - JOUR
AU  - Jintang Li
TI  - Bochner's formula for harmonic maps
 from Finsler manifolds
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 185
EP  - 190
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-2/
DO  - 10.4064/cm113-2-2
LA  - en
ID  - 10_4064_cm113_2_2
ER  - 
%0 Journal Article
%A Jintang Li
%T Bochner's formula for harmonic maps
 from Finsler manifolds
%J Colloquium Mathematicum
%D 2008
%P 185-190
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-2/
%R 10.4064/cm113-2-2
%G en
%F 10_4064_cm113_2_2
Jintang Li. Bochner's formula for harmonic maps
 from Finsler manifolds. Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 185-190. doi : 10.4064/cm113-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-2/

Cité par Sources :