Reflexive subspaces of some Orlicz spaces
Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 333-340
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that when the conjugate of an Orlicz function $\phi $ satisfies the growth condition $\Delta ^0$, then the reflexive subspaces of $L^\phi $ are closed in the $L^1$-norm. For that purpose, we use (and give a new proof of) a result of J. Alexopoulos saying that weakly compact subsets of such $L^\phi $ have equi-absolutely continuous norm.
Keywords:
conjugate orlicz function phi satisfies growth condition delta reflexive subspaces phi closed norm purpose proof result alexopoulos saying weakly compact subsets phi have equi absolutely continuous norm
Affiliations des auteurs :
Emmanuelle Lavergne 1
@article{10_4064_cm113_2_13,
author = {Emmanuelle Lavergne},
title = {Reflexive subspaces of some {Orlicz} spaces},
journal = {Colloquium Mathematicum},
pages = {333--340},
publisher = {mathdoc},
volume = {113},
number = {2},
year = {2008},
doi = {10.4064/cm113-2-13},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-13/}
}
Emmanuelle Lavergne. Reflexive subspaces of some Orlicz spaces. Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 333-340. doi: 10.4064/cm113-2-13
Cité par Sources :