An elementary exact sequence of modules with an application to tiled orders
Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 307-318.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $m \ge 2$ be an integer. By using $m$ submodules of a given module, we construct a certain exact sequence, which is a well known short exact sequence when $m=2$. As an application, we compute a minimal projective resolution of the Jacobson radical of a tiled order.
DOI : 10.4064/cm113-2-11
Keywords: integer using submodules given module construct certain exact sequence which known short exact sequence application compute minimal projective resolution jacobson radical tiled order

Yosuke Sakai 1

1 Institute of Mathematics University of Tsukuba Tsukuba Ibaraki, 305-8571 Japan
@article{10_4064_cm113_2_11,
     author = {Yosuke Sakai},
     title = {An elementary exact sequence of modules
 with an application to tiled orders},
     journal = {Colloquium Mathematicum},
     pages = {307--318},
     publisher = {mathdoc},
     volume = {113},
     number = {2},
     year = {2008},
     doi = {10.4064/cm113-2-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-11/}
}
TY  - JOUR
AU  - Yosuke Sakai
TI  - An elementary exact sequence of modules
 with an application to tiled orders
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 307
EP  - 318
VL  - 113
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-11/
DO  - 10.4064/cm113-2-11
LA  - en
ID  - 10_4064_cm113_2_11
ER  - 
%0 Journal Article
%A Yosuke Sakai
%T An elementary exact sequence of modules
 with an application to tiled orders
%J Colloquium Mathematicum
%D 2008
%P 307-318
%V 113
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-11/
%R 10.4064/cm113-2-11
%G en
%F 10_4064_cm113_2_11
Yosuke Sakai. An elementary exact sequence of modules
 with an application to tiled orders. Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 307-318. doi : 10.4064/cm113-2-11. http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-11/

Cité par Sources :