An elementary exact sequence of modules
with an application to tiled orders
Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 307-318
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $m \ge 2$ be an integer. By using $m$ submodules of a given module, we construct a certain exact sequence, which is a well known short exact sequence when $m=2$. As an application, we compute a minimal projective resolution of the Jacobson radical of a tiled order.
Keywords:
integer using submodules given module construct certain exact sequence which known short exact sequence application compute minimal projective resolution jacobson radical tiled order
Affiliations des auteurs :
Yosuke Sakai 1
@article{10_4064_cm113_2_11,
author = {Yosuke Sakai},
title = {An elementary exact sequence of modules
with an application to tiled orders},
journal = {Colloquium Mathematicum},
pages = {307--318},
publisher = {mathdoc},
volume = {113},
number = {2},
year = {2008},
doi = {10.4064/cm113-2-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-11/}
}
TY - JOUR AU - Yosuke Sakai TI - An elementary exact sequence of modules with an application to tiled orders JO - Colloquium Mathematicum PY - 2008 SP - 307 EP - 318 VL - 113 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm113-2-11/ DO - 10.4064/cm113-2-11 LA - en ID - 10_4064_cm113_2_11 ER -
Yosuke Sakai. An elementary exact sequence of modules with an application to tiled orders. Colloquium Mathematicum, Tome 113 (2008) no. 2, pp. 307-318. doi: 10.4064/cm113-2-11
Cité par Sources :