Absolutely convergent Fourier series
and generalized Lipschitz classes of functions
Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 105-117
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate the order of magnitude of the modulus of continuity of
a function $f$ with absolutely convergent Fourier series. We give sufficient conditions in terms of the Fourier
coefficients in order that $f$ belong to one of the generalized Lipschitz classes $\mathop{\rm Lip}(\alpha, L)$
and $\mathop{\rm Lip}(\alpha, 1/L)$, where $0\le \alpha\le 1$ and $L=L(x)$ is a positive, nondecreasing,
slowly
varying function such that $L(x)\to \infty$ as $x\to \infty$. For example,
a $2\pi$-periodic function $f$ is said to belong to the class $\mathop{\rm Lip} (\alpha, L)$ if
$$
|f(x+h) - f(x)| \le C h^\alpha L({1/h}) \quad\ \hbox{for all }
x\in {\mathbb T} ,\, h>0,
$$
where the constant $C$ does not depend on $x$ and $h$. The above sufficient conditions are also necessary
in the case of a certain subclass of Fourier coefficients.
As a corollary, we deduce that if a function
$f$ with Fourier coefficients in this subclass belongs to one of these generalized Lipschitz
classes, then the conjugate function $\skew4\tilde f$ also belongs to the same
generalized Lipschitz class.
Keywords:
investigate order magnitude modulus continuity function absolutely convergent fourier series sufficient conditions terms fourier coefficients order belong generalized lipschitz classes mathop lip alpha mathop lip alpha where alpha positive nondecreasing slowly varying function infty infty example nbsp pi periodic function said belong class mathop lip alpha alpha quad hbox mathbb where constant does depend above sufficient conditions necessary certain subclass fourier coefficients corollary deduce function fourier coefficients subclass belongs these generalized lipschitz classes conjugate function skew tilde belongs generalized lipschitz class
Affiliations des auteurs :
Ferenc Móricz 1
@article{10_4064_cm113_1_7,
author = {Ferenc M\'oricz},
title = {Absolutely convergent {Fourier} series
and generalized {Lipschitz} classes of functions},
journal = {Colloquium Mathematicum},
pages = {105--117},
publisher = {mathdoc},
volume = {113},
number = {1},
year = {2008},
doi = {10.4064/cm113-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-7/}
}
TY - JOUR AU - Ferenc Móricz TI - Absolutely convergent Fourier series and generalized Lipschitz classes of functions JO - Colloquium Mathematicum PY - 2008 SP - 105 EP - 117 VL - 113 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-7/ DO - 10.4064/cm113-1-7 LA - en ID - 10_4064_cm113_1_7 ER -
Ferenc Móricz. Absolutely convergent Fourier series and generalized Lipschitz classes of functions. Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 105-117. doi: 10.4064/cm113-1-7
Cité par Sources :