Absolutely convergent Fourier series and generalized Lipschitz classes of functions
Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 105-117.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate the order of magnitude of the modulus of continuity of a function $f$ with absolutely convergent Fourier series. We give sufficient conditions in terms of the Fourier coefficients in order that $f$ belong to one of the generalized Lipschitz classes $\mathop{\rm Lip}(\alpha, L)$ and $\mathop{\rm Lip}(\alpha, 1/L)$, where $0\le \alpha\le 1$ and $L=L(x)$ is a positive, nondecreasing, slowly varying function such that $L(x)\to \infty$ as $x\to \infty$. For example, a $2\pi$-periodic function $f$ is said to belong to the class $\mathop{\rm Lip} (\alpha, L)$ if $$ |f(x+h) - f(x)| \le C h^\alpha L({1/h}) \quad\ \hbox{for all } x\in {\mathbb T} ,\, h>0, $$ where the constant $C$ does not depend on $x$ and $h$. The above sufficient conditions are also necessary in the case of a certain subclass of Fourier coefficients. As a corollary, we deduce that if a function $f$ with Fourier coefficients in this subclass belongs to one of these generalized Lipschitz classes, then the conjugate function $\skew4\tilde f$ also belongs to the same generalized Lipschitz class.
DOI : 10.4064/cm113-1-7
Keywords: investigate order magnitude modulus continuity function absolutely convergent fourier series sufficient conditions terms fourier coefficients order belong generalized lipschitz classes mathop lip alpha mathop lip alpha where alpha positive nondecreasing slowly varying function infty infty example nbsp pi periodic function said belong class mathop lip alpha alpha quad hbox mathbb where constant does depend above sufficient conditions necessary certain subclass fourier coefficients corollary deduce function fourier coefficients subclass belongs these generalized lipschitz classes conjugate function skew tilde belongs generalized lipschitz class

Ferenc Móricz 1

1 Bolyai Institute University of Szeged Aradi vértanúk tere 1 6720 Szeged, Hungary
@article{10_4064_cm113_1_7,
     author = {Ferenc M\'oricz},
     title = {Absolutely convergent {Fourier} series
and generalized {Lipschitz} classes of functions},
     journal = {Colloquium Mathematicum},
     pages = {105--117},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2008},
     doi = {10.4064/cm113-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-7/}
}
TY  - JOUR
AU  - Ferenc Móricz
TI  - Absolutely convergent Fourier series
and generalized Lipschitz classes of functions
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 105
EP  - 117
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-7/
DO  - 10.4064/cm113-1-7
LA  - en
ID  - 10_4064_cm113_1_7
ER  - 
%0 Journal Article
%A Ferenc Móricz
%T Absolutely convergent Fourier series
and generalized Lipschitz classes of functions
%J Colloquium Mathematicum
%D 2008
%P 105-117
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-7/
%R 10.4064/cm113-1-7
%G en
%F 10_4064_cm113_1_7
Ferenc Móricz. Absolutely convergent Fourier series
and generalized Lipschitz classes of functions. Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 105-117. doi : 10.4064/cm113-1-7. http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-7/

Cité par Sources :