Classification of low-dimensional orbit closures in varieties of quiver representations
Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 55-90.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We classify the affine varieties of dimension at most 4 which occur as orbit closures with an invariant point in varieties of representations of quivers. Moreover, we show that they are normal and Cohen–Macaulay.
DOI : 10.4064/cm113-1-5
Keywords: classify affine varieties dimension which occur orbit closures invariant point varieties representations quivers moreover normal cohen macaulay

Paweł Rochman 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm113_1_5,
     author = {Pawe{\l} Rochman},
     title = {Classification of low-dimensional orbit closures in varieties of quiver representations},
     journal = {Colloquium Mathematicum},
     pages = {55--90},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2008},
     doi = {10.4064/cm113-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-5/}
}
TY  - JOUR
AU  - Paweł Rochman
TI  - Classification of low-dimensional orbit closures in varieties of quiver representations
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 55
EP  - 90
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-5/
DO  - 10.4064/cm113-1-5
LA  - en
ID  - 10_4064_cm113_1_5
ER  - 
%0 Journal Article
%A Paweł Rochman
%T Classification of low-dimensional orbit closures in varieties of quiver representations
%J Colloquium Mathematicum
%D 2008
%P 55-90
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-5/
%R 10.4064/cm113-1-5
%G en
%F 10_4064_cm113_1_5
Paweł Rochman. Classification of low-dimensional orbit closures in varieties of quiver representations. Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 55-90. doi : 10.4064/cm113-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-5/

Cité par Sources :