Classification of low-dimensional orbit closures in varieties of quiver representations
Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 55-90
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We classify the affine varieties of dimension at most 4 which occur as orbit closures with an invariant point in varieties of representations of quivers. Moreover, we show that they are normal and Cohen–Macaulay.
Keywords:
classify affine varieties dimension which occur orbit closures invariant point varieties representations quivers moreover normal cohen macaulay
Affiliations des auteurs :
Paweł Rochman 1
@article{10_4064_cm113_1_5,
author = {Pawe{\l} Rochman},
title = {Classification of low-dimensional orbit closures in varieties of quiver representations},
journal = {Colloquium Mathematicum},
pages = {55--90},
publisher = {mathdoc},
volume = {113},
number = {1},
year = {2008},
doi = {10.4064/cm113-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-5/}
}
TY - JOUR AU - Paweł Rochman TI - Classification of low-dimensional orbit closures in varieties of quiver representations JO - Colloquium Mathematicum PY - 2008 SP - 55 EP - 90 VL - 113 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-5/ DO - 10.4064/cm113-1-5 LA - en ID - 10_4064_cm113_1_5 ER -
Paweł Rochman. Classification of low-dimensional orbit closures in varieties of quiver representations. Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 55-90. doi: 10.4064/cm113-1-5
Cité par Sources :