An example of a simple derivation in two variables
Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 25-31
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $k$ be a field of characteristic zero. We prove that the derivation $D=\partial /\partial x+(y^s+px)(\partial /\partial y)$, where $s\geq 2$, $0\not =p\in k$, of the polynomial ring $k[x,y]$ is simple.
Keywords:
field characteristic zero prove derivation partial partial partial partial where geq polynomial ring simple
Affiliations des auteurs :
Andrzej Nowicki 1
@article{10_4064_cm113_1_3,
author = {Andrzej Nowicki},
title = {An example of a simple derivation in two variables},
journal = {Colloquium Mathematicum},
pages = {25--31},
publisher = {mathdoc},
volume = {113},
number = {1},
year = {2008},
doi = {10.4064/cm113-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-3/}
}
Andrzej Nowicki. An example of a simple derivation in two variables. Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 25-31. doi: 10.4064/cm113-1-3
Cité par Sources :