Regular orbital measures on Lie algebras
Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 1-11.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $H_0$ be a regular element of an irreducible Lie algebra ${\mathfrak g}$, and let $\mu_{H_0}$ be the orbital measure supported on $O_{H_0}$. We show that $\widehat{\mu}_{H_0}^k\in L^2({\mathfrak g})$ if and only if $k>\dim{\mathfrak g} / (\dim{\mathfrak g}-\mathop{\rm rank}{\mathfrak g})$.
DOI : 10.4064/cm113-1-1
Keywords: regular element irreducible lie algebra mathfrak orbital measure supported widehat mathfrak only dim mathfrak dim mathfrak mathop rank mathfrak

Alex Wright 1

1 Department of Pure Mathematics University of Waterloo Waterloo, ON, Canada N2L 3G1
@article{10_4064_cm113_1_1,
     author = {Alex Wright},
     title = {Regular orbital measures on {Lie} algebras},
     journal = {Colloquium Mathematicum},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {113},
     number = {1},
     year = {2008},
     doi = {10.4064/cm113-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-1/}
}
TY  - JOUR
AU  - Alex Wright
TI  - Regular orbital measures on Lie algebras
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 1
EP  - 11
VL  - 113
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-1/
DO  - 10.4064/cm113-1-1
LA  - en
ID  - 10_4064_cm113_1_1
ER  - 
%0 Journal Article
%A Alex Wright
%T Regular orbital measures on Lie algebras
%J Colloquium Mathematicum
%D 2008
%P 1-11
%V 113
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-1/
%R 10.4064/cm113-1-1
%G en
%F 10_4064_cm113_1_1
Alex Wright. Regular orbital measures on Lie algebras. Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 1-11. doi : 10.4064/cm113-1-1. http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-1/

Cité par Sources :