Regular orbital measures on Lie algebras
Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 1-11
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $H_0$ be a regular element of an irreducible Lie algebra ${\mathfrak g}$,
and let $\mu_{H_0}$ be the orbital measure supported on $O_{H_0}$.
We show that $\widehat{\mu}_{H_0}^k\in L^2({\mathfrak g})$ if and only if
$k>\dim{\mathfrak g} / (\dim{\mathfrak g}-\mathop{\rm rank}{\mathfrak g})$.
Keywords:
regular element irreducible lie algebra mathfrak orbital measure supported widehat mathfrak only dim mathfrak dim mathfrak mathop rank mathfrak
Affiliations des auteurs :
Alex Wright 1
@article{10_4064_cm113_1_1,
author = {Alex Wright},
title = {Regular orbital measures on {Lie} algebras},
journal = {Colloquium Mathematicum},
pages = {1--11},
publisher = {mathdoc},
volume = {113},
number = {1},
year = {2008},
doi = {10.4064/cm113-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm113-1-1/}
}
Alex Wright. Regular orbital measures on Lie algebras. Colloquium Mathematicum, Tome 113 (2008) no. 1, pp. 1-11. doi: 10.4064/cm113-1-1
Cité par Sources :