Existence of discrete ergodic singular transforms
for admissible processes
Colloquium Mathematicum, Tome 112 (2008) no. 2, pp. 335-343
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This article is concerned with the study
of the discrete version of generalized ergodic Calderón–Zygmund
singular operators. It is shown that such discrete ergodic
singular operators for a class of superadditive processes,
namely, bounded symmetric admissible processes relative to measure
preserving transformations, are weak $(1,1)$.
From this maximal inequality, a.e. existence of the
discrete ergodic singular transform is obtained for
such superadditive processes. This generalizes the well-known
result on the existence of the ergodic Hilbert transform.
Keywords:
article concerned study discrete version generalized ergodic calder zygmund singular operators shown discrete ergodic singular operators class superadditive processes namely bounded symmetric admissible processes relative measure preserving transformations weak maximal inequality existence discrete ergodic singular transform obtained superadditive processes generalizes well known result existence ergodic hilbert transform
Affiliations des auteurs :
Doğan Çömez 1
@article{10_4064_cm112_2_8,
author = {Do\u{g}an \c{C}\"omez},
title = {Existence of discrete ergodic singular transforms
for admissible processes},
journal = {Colloquium Mathematicum},
pages = {335--343},
publisher = {mathdoc},
volume = {112},
number = {2},
year = {2008},
doi = {10.4064/cm112-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm112-2-8/}
}
TY - JOUR AU - Doğan Çömez TI - Existence of discrete ergodic singular transforms for admissible processes JO - Colloquium Mathematicum PY - 2008 SP - 335 EP - 343 VL - 112 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm112-2-8/ DO - 10.4064/cm112-2-8 LA - en ID - 10_4064_cm112_2_8 ER -
Doğan Çömez. Existence of discrete ergodic singular transforms for admissible processes. Colloquium Mathematicum, Tome 112 (2008) no. 2, pp. 335-343. doi: 10.4064/cm112-2-8
Cité par Sources :