On bilinear biquandles
Colloquium Mathematicum, Tome 112 (2008) no. 2, pp. 279-289.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define a type of biquandle which is a generalization of symplectic quandles. We use the extra structure of these bilinear biquandles to define new knot and link invariants and give some examples.
DOI : 10.4064/cm112-2-5
Keywords: define type biquandle which generalization symplectic quandles extra structure these bilinear biquandles define knot link invariants examples

Sam Nelson 1 ; Jacquelyn L. Rische 2

1 Department of Mathematics Pomona College 610 North College Avenue Claremont, CA 91711, U.S.A.
2 Department of Mathematics 103 MSTB University of California, Irvine Irvine, CA 92697, U.S.A.
@article{10_4064_cm112_2_5,
     author = {Sam Nelson and Jacquelyn L. Rische},
     title = {On bilinear biquandles},
     journal = {Colloquium Mathematicum},
     pages = {279--289},
     publisher = {mathdoc},
     volume = {112},
     number = {2},
     year = {2008},
     doi = {10.4064/cm112-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm112-2-5/}
}
TY  - JOUR
AU  - Sam Nelson
AU  - Jacquelyn L. Rische
TI  - On bilinear biquandles
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 279
EP  - 289
VL  - 112
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm112-2-5/
DO  - 10.4064/cm112-2-5
LA  - en
ID  - 10_4064_cm112_2_5
ER  - 
%0 Journal Article
%A Sam Nelson
%A Jacquelyn L. Rische
%T On bilinear biquandles
%J Colloquium Mathematicum
%D 2008
%P 279-289
%V 112
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm112-2-5/
%R 10.4064/cm112-2-5
%G en
%F 10_4064_cm112_2_5
Sam Nelson; Jacquelyn L. Rische. On bilinear biquandles. Colloquium Mathematicum, Tome 112 (2008) no. 2, pp. 279-289. doi : 10.4064/cm112-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm112-2-5/

Cité par Sources :