Highly transitive subgroups of the symmetric group on the natural numbers
Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 163-173.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Highly transitive subgroups of the symmetric group on the natural numbers are studied using combinatorics and the Baire category method. In particular, elementary combinatorial arguments are used to prove that given any nonidentity permutation $\alpha$ on $\mathbb{N}$ there is another permutation $\beta$ on $\mathbb{N}$ such that the subgroup generated by $\alpha$ and $\beta$ is highly transitive. The Baire category method is used to prove that for certain types of permutation $\alpha$ there are many such possibilities for $\beta$. As a simple corollary, if $2 \leq \kappa \leq 2 ^{\aleph _0}$, then the free group of rank $\kappa$ has a highly transitive faithful representation as permutations on the natural numbers.
DOI : 10.4064/cm112-1-9
Keywords: highly transitive subgroups symmetric group natural numbers studied using combinatorics baire category method particular elementary combinatorial arguments prove given nonidentity permutation alpha mathbb there another permutation beta mathbb subgroup generated alpha beta highly transitive baire category method prove certain types permutation alpha there many possibilities beta simple corollary leq kappa leq aleph group rank kappa has highly transitive faithful representation permutations natural numbers

U. B. Darji 1 ; J. D. Mitchell 2

1 Mathematics Department University of Louisville Louisville, KY 40292, U.S.A.
2 Mathematics Institute University of St Andrews North Haugh St Andrews, Fife, KY16 9SS, UK
@article{10_4064_cm112_1_9,
     author = {U. B. Darji and J. D. Mitchell},
     title = {Highly transitive subgroups of the symmetric group on the natural numbers},
     journal = {Colloquium Mathematicum},
     pages = {163--173},
     publisher = {mathdoc},
     volume = {112},
     number = {1},
     year = {2008},
     doi = {10.4064/cm112-1-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-9/}
}
TY  - JOUR
AU  - U. B. Darji
AU  - J. D. Mitchell
TI  - Highly transitive subgroups of the symmetric group on the natural numbers
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 163
EP  - 173
VL  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-9/
DO  - 10.4064/cm112-1-9
LA  - en
ID  - 10_4064_cm112_1_9
ER  - 
%0 Journal Article
%A U. B. Darji
%A J. D. Mitchell
%T Highly transitive subgroups of the symmetric group on the natural numbers
%J Colloquium Mathematicum
%D 2008
%P 163-173
%V 112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-9/
%R 10.4064/cm112-1-9
%G en
%F 10_4064_cm112_1_9
U. B. Darji; J. D. Mitchell. Highly transitive subgroups of the symmetric group on the natural numbers. Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 163-173. doi : 10.4064/cm112-1-9. http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-9/

Cité par Sources :