Highly transitive subgroups of the symmetric group on the natural numbers
Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 163-173
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Highly transitive subgroups of the symmetric group on the natural numbers are studied using combinatorics and the
Baire category method. In particular, elementary combinatorial arguments are used to prove that
given any nonidentity permutation $\alpha$ on $\mathbb{N}$
there is another permutation $\beta$ on $\mathbb{N}$ such that the subgroup generated by $\alpha$ and $\beta$ is highly transitive. The Baire category method is used to prove that for certain types of permutation $\alpha$ there are many such possibilities for $\beta$.
As a simple corollary, if $2 \leq
\kappa \leq 2 ^{\aleph _0}$, then the free group of rank $\kappa$ has a highly transitive faithful representation as permutations on the natural numbers.
Keywords:
highly transitive subgroups symmetric group natural numbers studied using combinatorics baire category method particular elementary combinatorial arguments prove given nonidentity permutation alpha mathbb there another permutation beta mathbb subgroup generated alpha beta highly transitive baire category method prove certain types permutation alpha there many possibilities beta simple corollary leq kappa leq aleph group rank kappa has highly transitive faithful representation permutations natural numbers
Affiliations des auteurs :
U. B. Darji 1 ; J. D. Mitchell 2
@article{10_4064_cm112_1_9,
author = {U. B. Darji and J. D. Mitchell},
title = {Highly transitive subgroups of the symmetric group on the natural numbers},
journal = {Colloquium Mathematicum},
pages = {163--173},
publisher = {mathdoc},
volume = {112},
number = {1},
year = {2008},
doi = {10.4064/cm112-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-9/}
}
TY - JOUR AU - U. B. Darji AU - J. D. Mitchell TI - Highly transitive subgroups of the symmetric group on the natural numbers JO - Colloquium Mathematicum PY - 2008 SP - 163 EP - 173 VL - 112 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-9/ DO - 10.4064/cm112-1-9 LA - en ID - 10_4064_cm112_1_9 ER -
%0 Journal Article %A U. B. Darji %A J. D. Mitchell %T Highly transitive subgroups of the symmetric group on the natural numbers %J Colloquium Mathematicum %D 2008 %P 163-173 %V 112 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-9/ %R 10.4064/cm112-1-9 %G en %F 10_4064_cm112_1_9
U. B. Darji; J. D. Mitchell. Highly transitive subgroups of the symmetric group on the natural numbers. Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 163-173. doi: 10.4064/cm112-1-9
Cité par Sources :