Conformal gradient vector fields on a compact
Riemannian manifold
Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 157-161
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is proved that if an $n$-dimensional compact connected Riemannian manifold $(M,g)$ with Ricci
curvature ${\rm Ric}$ satisfying
$$
0{\rm Ric}\leq (n-1)\bigg( 2-\frac{nc}{\lambda _{1}}\bigg) c
$$
for a constant $c$ admits a nonzero conformal gradient vector field, then it
is isometric to $S^{n}(c)$, where $\lambda _{1}$ is the first nonzero
eigenvalue of the Laplacian operator on $M$. Also, it is observed that
existence of a nonzero conformal gradient vector field on an $n$-dimensional
compact connected Einstein manifold forces it to have positive scalar
curvature and ultimately to be isometric to $S^{n}(c)$, where $n(n-1)c$ is
the scalar curvature of the manifold.
Keywords:
proved n dimensional compact connected riemannian manifold ricci curvature ric satisfying ric leq n bigg frac lambda bigg constant admits nonzero conformal gradient vector field isometric where lambda first nonzero eigenvalue laplacian operator observed existence nonzero conformal gradient vector field n dimensional compact connected einstein manifold forces have positive scalar curvature ultimately isometric where n scalar curvature manifold
Affiliations des auteurs :
Sharief Deshmukh 1 ; Falleh Al-Solamy 2
@article{10_4064_cm112_1_8,
author = {Sharief Deshmukh and Falleh Al-Solamy},
title = {Conformal gradient vector fields on a compact
{Riemannian} manifold},
journal = {Colloquium Mathematicum},
pages = {157--161},
publisher = {mathdoc},
volume = {112},
number = {1},
year = {2008},
doi = {10.4064/cm112-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-8/}
}
TY - JOUR AU - Sharief Deshmukh AU - Falleh Al-Solamy TI - Conformal gradient vector fields on a compact Riemannian manifold JO - Colloquium Mathematicum PY - 2008 SP - 157 EP - 161 VL - 112 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-8/ DO - 10.4064/cm112-1-8 LA - en ID - 10_4064_cm112_1_8 ER -
%0 Journal Article %A Sharief Deshmukh %A Falleh Al-Solamy %T Conformal gradient vector fields on a compact Riemannian manifold %J Colloquium Mathematicum %D 2008 %P 157-161 %V 112 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-8/ %R 10.4064/cm112-1-8 %G en %F 10_4064_cm112_1_8
Sharief Deshmukh; Falleh Al-Solamy. Conformal gradient vector fields on a compact Riemannian manifold. Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 157-161. doi: 10.4064/cm112-1-8
Cité par Sources :