Conformal gradient vector fields on a compact Riemannian manifold
Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 157-161.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is proved that if an $n$-dimensional compact connected Riemannian manifold $(M,g)$ with Ricci curvature ${\rm Ric}$ satisfying $$ 0{\rm Ric}\leq (n-1)\bigg( 2-\frac{nc}{\lambda _{1}}\bigg) c $$ for a constant $c$ admits a nonzero conformal gradient vector field, then it is isometric to $S^{n}(c)$, where $\lambda _{1}$ is the first nonzero eigenvalue of the Laplacian operator on $M$. Also, it is observed that existence of a nonzero conformal gradient vector field on an $n$-dimensional compact connected Einstein manifold forces it to have positive scalar curvature and ultimately to be isometric to $S^{n}(c)$, where $n(n-1)c$ is the scalar curvature of the manifold.
DOI : 10.4064/cm112-1-8
Keywords: proved n dimensional compact connected riemannian manifold ricci curvature ric satisfying ric leq n bigg frac lambda bigg constant admits nonzero conformal gradient vector field isometric where lambda first nonzero eigenvalue laplacian operator observed existence nonzero conformal gradient vector field n dimensional compact connected einstein manifold forces have positive scalar curvature ultimately isometric where n scalar curvature manifold

Sharief Deshmukh 1 ; Falleh Al-Solamy 2

1 Department of Mathematics King Saud University P.O. Box 2455 Riyadh 11451, Saudi Arabia
2 Department of Mathematics King Abdul Aziz University P.O. Box 80015 Jeddah 21589, Saudi Arabia
@article{10_4064_cm112_1_8,
     author = {Sharief Deshmukh and Falleh Al-Solamy},
     title = {Conformal gradient vector fields on a compact
 {Riemannian} manifold},
     journal = {Colloquium Mathematicum},
     pages = {157--161},
     publisher = {mathdoc},
     volume = {112},
     number = {1},
     year = {2008},
     doi = {10.4064/cm112-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-8/}
}
TY  - JOUR
AU  - Sharief Deshmukh
AU  - Falleh Al-Solamy
TI  - Conformal gradient vector fields on a compact
 Riemannian manifold
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 157
EP  - 161
VL  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-8/
DO  - 10.4064/cm112-1-8
LA  - en
ID  - 10_4064_cm112_1_8
ER  - 
%0 Journal Article
%A Sharief Deshmukh
%A Falleh Al-Solamy
%T Conformal gradient vector fields on a compact
 Riemannian manifold
%J Colloquium Mathematicum
%D 2008
%P 157-161
%V 112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-8/
%R 10.4064/cm112-1-8
%G en
%F 10_4064_cm112_1_8
Sharief Deshmukh; Falleh Al-Solamy. Conformal gradient vector fields on a compact
 Riemannian manifold. Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 157-161. doi : 10.4064/cm112-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-8/

Cité par Sources :