Minimal generics from subvarieties
of the clone extension
of the variety of Boolean algebras
Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 131-145
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\tau$ be a type of algebras without nullary fundamental
operation symbols. We call
an identity $\varphi\approx\psi$ of type $\tau$ clone
compatible if $\varphi$ and $\psi$ are the same variable or the sets of
fundamental operation symbols in $\varphi$ and $\psi$ are nonempty and
identical. For a variety $\mathcal V$ of type $\tau$ we denote by ${\mathcal V}^{c}$ the
variety of type $\tau$ defined by all clone compatible identities
from $\mathop{\rm Id}\nolimits(\mathcal V)$. We call ${\mathcal V}^{c}$ the clone extension of $\mathcal V$. In this
paper we describe algebras and minimal generics of all
subvarieties of ${\mathcal{B}}^{c}$, where $\mathcal B$ is the variety of Boolean
algebras.
Keywords:
tau type algebras without nullary fundamental operation symbols call identity varphi approx psi type tau clone compatible varphi psi variable sets fundamental operation symbols varphi psi nonempty identical variety mathcal type tau denote mathcal variety type tau defined clone compatible identities mathop nolimits mathcal call mathcal clone extension mathcal paper describe algebras minimal generics subvarieties mathcal where mathcal variety boolean algebras
Affiliations des auteurs :
Jerzy P/lonka 1
@article{10_4064_cm112_1_6,
author = {Jerzy P/lonka},
title = {Minimal generics from subvarieties
of the clone extension
of the variety of {Boolean} algebras},
journal = {Colloquium Mathematicum},
pages = {131--145},
publisher = {mathdoc},
volume = {112},
number = {1},
year = {2008},
doi = {10.4064/cm112-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-6/}
}
TY - JOUR AU - Jerzy P/lonka TI - Minimal generics from subvarieties of the clone extension of the variety of Boolean algebras JO - Colloquium Mathematicum PY - 2008 SP - 131 EP - 145 VL - 112 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-6/ DO - 10.4064/cm112-1-6 LA - en ID - 10_4064_cm112_1_6 ER -
%0 Journal Article %A Jerzy P/lonka %T Minimal generics from subvarieties of the clone extension of the variety of Boolean algebras %J Colloquium Mathematicum %D 2008 %P 131-145 %V 112 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-6/ %R 10.4064/cm112-1-6 %G en %F 10_4064_cm112_1_6
Jerzy P/lonka. Minimal generics from subvarieties of the clone extension of the variety of Boolean algebras. Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 131-145. doi: 10.4064/cm112-1-6
Cité par Sources :