On derived equivalence classification of gentle two-cycle algebras
Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 33-72.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We classify, up to derived (equivalently, tilting-cotilting) equivalence, all nondegenerate gentle two-cycle algebras. We also give a partial classification and formulate a conjecture in the degenerate case.
DOI : 10.4064/cm112-1-3
Keywords: classify derived equivalently tilting cotilting equivalence nondegenerate gentle two cycle algebras partial classification formulate conjecture degenerate

Grzegorz Bobiński 1 ; Piotr Malicki 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm112_1_3,
     author = {Grzegorz Bobi\'nski and Piotr Malicki},
     title = {On derived equivalence classification
 of gentle two-cycle algebras},
     journal = {Colloquium Mathematicum},
     pages = {33--72},
     publisher = {mathdoc},
     volume = {112},
     number = {1},
     year = {2008},
     doi = {10.4064/cm112-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-3/}
}
TY  - JOUR
AU  - Grzegorz Bobiński
AU  - Piotr Malicki
TI  - On derived equivalence classification
 of gentle two-cycle algebras
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 33
EP  - 72
VL  - 112
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-3/
DO  - 10.4064/cm112-1-3
LA  - en
ID  - 10_4064_cm112_1_3
ER  - 
%0 Journal Article
%A Grzegorz Bobiński
%A Piotr Malicki
%T On derived equivalence classification
 of gentle two-cycle algebras
%J Colloquium Mathematicum
%D 2008
%P 33-72
%V 112
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-3/
%R 10.4064/cm112-1-3
%G en
%F 10_4064_cm112_1_3
Grzegorz Bobiński; Piotr Malicki. On derived equivalence classification
 of gentle two-cycle algebras. Colloquium Mathematicum, Tome 112 (2008) no. 1, pp. 33-72. doi : 10.4064/cm112-1-3. http://geodesic.mathdoc.fr/articles/10.4064/cm112-1-3/

Cité par Sources :