Some properties of $\alpha$-harmonic measure
Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 297-314.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The $\alpha$-harmonic measure is the hitting distribution of symmetric $\alpha$-stable processes upon exiting an open set in ${\mathbb R}^n$ ($0\alpha2$, $n\geq 2$). It can also be defined in the context of Riesz potential theory and the fractional Laplacian. We prove some geometric estimates for $\alpha$-harmonic measure.
DOI : 10.4064/cm111-2-8
Keywords: alpha harmonic measure hitting distribution symmetric alpha stable processes exiting set mathbb alpha geq defined context riesz potential theory fractional laplacian prove geometric estimates alpha harmonic measure

Dimitrios Betsakos 1

1 Department of Mathematics Aristotle University of Thessaloniki 54124 Thessaloniki, Greece
@article{10_4064_cm111_2_8,
     author = {Dimitrios Betsakos},
     title = {Some properties of $\alpha$-harmonic measure},
     journal = {Colloquium Mathematicum},
     pages = {297--314},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2008},
     doi = {10.4064/cm111-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-8/}
}
TY  - JOUR
AU  - Dimitrios Betsakos
TI  - Some properties of $\alpha$-harmonic measure
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 297
EP  - 314
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-8/
DO  - 10.4064/cm111-2-8
LA  - en
ID  - 10_4064_cm111_2_8
ER  - 
%0 Journal Article
%A Dimitrios Betsakos
%T Some properties of $\alpha$-harmonic measure
%J Colloquium Mathematicum
%D 2008
%P 297-314
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-8/
%R 10.4064/cm111-2-8
%G en
%F 10_4064_cm111_2_8
Dimitrios Betsakos. Some properties of $\alpha$-harmonic measure. Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 297-314. doi : 10.4064/cm111-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-8/

Cité par Sources :