Some properties of $\alpha$-harmonic measure
Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 297-314
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The $\alpha$-harmonic measure is the hitting distribution of
symmetric $\alpha$-stable processes upon exiting an open set in
${\mathbb R}^n$ ($0\alpha2$, $n\geq 2$). It can also be defined in the
context of Riesz potential theory and the fractional Laplacian. We
prove some geometric estimates for $\alpha$-harmonic measure.
Keywords:
alpha harmonic measure hitting distribution symmetric alpha stable processes exiting set mathbb alpha geq defined context riesz potential theory fractional laplacian prove geometric estimates alpha harmonic measure
Affiliations des auteurs :
Dimitrios Betsakos 1
@article{10_4064_cm111_2_8,
author = {Dimitrios Betsakos},
title = {Some properties of $\alpha$-harmonic measure},
journal = {Colloquium Mathematicum},
pages = {297--314},
publisher = {mathdoc},
volume = {111},
number = {2},
year = {2008},
doi = {10.4064/cm111-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-8/}
}
Dimitrios Betsakos. Some properties of $\alpha$-harmonic measure. Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 297-314. doi: 10.4064/cm111-2-8
Cité par Sources :