Some critical almost Kähler structures
Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 205-212
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider the set of all almost Kähler structures
$(g,J)$ on a $2n$-dimensional compact orientable manifold $M$
and study a critical point of the functional
${\scr F}_{\lambda,\mu}(J,g) = \int_M (\lambda \tau + \mu \tau^*)\,
dM_g$ with respect to the scalar curvature $\tau$ and
the $*$-scalar curvature $\tau^*$.
We show that an almost Kähler structure $(J,g)$ is a
critical point of ${\scr F}_{-1,1}$ if and only if $(J,g)$
is a Kähler structure on $M$.
Keywords:
consider set almost hler structures n dimensional compact orientable manifold study critical point functional scr lambda int lambda tau tau * respect scalar curvature tau * scalar curvature tau * almost hler structure critical point scr only hler structure nbsp
Affiliations des auteurs :
Takashi Oguro 1 ; Kouei Sekigawa 2
@article{10_4064_cm111_2_4,
author = {Takashi Oguro and Kouei Sekigawa},
title = {Some critical almost {K\"ahler} structures},
journal = {Colloquium Mathematicum},
pages = {205--212},
publisher = {mathdoc},
volume = {111},
number = {2},
year = {2008},
doi = {10.4064/cm111-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-4/}
}
Takashi Oguro; Kouei Sekigawa. Some critical almost Kähler structures. Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 205-212. doi: 10.4064/cm111-2-4
Cité par Sources :