A $ q$-analogue of complete monotonicity
Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 169-181.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The aim of this paper is to give a $q$-analogue for complete monotonicity. We apply a classical characterization of Hausdorff moment sequences in terms of positive definiteness and complete monotonicity, adapted to the $q$-situation. The method due to Maserick and Szafraniec that does not need moments turns out to be useful. A definition of a $q$-moment sequence appears as a by-product.
DOI : 10.4064/cm111-2-1
Keywords: paper q analogue complete monotonicity apply classical characterization hausdorff moment sequences terms positive definiteness complete monotonicity adapted q situation method due maserick szafraniec does moments turns out useful definition q moment sequence appears by product

Anna Kula 1

1 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Krak/ow, Poland
@article{10_4064_cm111_2_1,
     author = {Anna Kula},
     title = {A $ q$-analogue of complete monotonicity},
     journal = {Colloquium Mathematicum},
     pages = {169--181},
     publisher = {mathdoc},
     volume = {111},
     number = {2},
     year = {2008},
     doi = {10.4064/cm111-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-1/}
}
TY  - JOUR
AU  - Anna Kula
TI  - A $ q$-analogue of complete monotonicity
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 169
EP  - 181
VL  - 111
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-1/
DO  - 10.4064/cm111-2-1
LA  - en
ID  - 10_4064_cm111_2_1
ER  - 
%0 Journal Article
%A Anna Kula
%T A $ q$-analogue of complete monotonicity
%J Colloquium Mathematicum
%D 2008
%P 169-181
%V 111
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-1/
%R 10.4064/cm111-2-1
%G en
%F 10_4064_cm111_2_1
Anna Kula. A $ q$-analogue of complete monotonicity. Colloquium Mathematicum, Tome 111 (2008) no. 2, pp. 169-181. doi : 10.4064/cm111-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm111-2-1/

Cité par Sources :