Lifting vector fields to the $r$th order frame bundle
Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 51-58.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We describe all natural operators $\mathcal{A}$ lifting nowhere vanishing vector fields $X$ on $m$-dimensional manifolds $M$ to vector fields $\mathcal{A}(X)$ on the $r$th order frame bundle $L^rM=\mathop{\rm inv} J^r_0(\mathbb{R}^m, M)$ over~$M$. Next, we describe all natural operators $\mathcal{A}$ lifting vector fields $X$ on $m$-manifolds $M$ to vector fields on $L^rM$. In both cases we deduce that the spaces of all operators $\mathcal{A}$ in question form free $(m(C^{m+r}_r-1)+1)$-dimensional modules over algebras of all smooth maps $J^{r-1}_0\widetilde T\mathbb{R}^m\to\mathbb{R}$ and $J^{r-1}_0T\mathbb{R}^m\to\mathbb{R}$ respectively, where $C^n_k={n!/(n-k)!k!}$. We explicitly construct bases of these modules. In particular, we find that the vector space over $\mathbb{R}$ of all natural linear operators lifting vector fields $X$ on $m$-manifolds $M$ to vector fields on $L^rM$ is $(m^2C^{m+r-1}_{r-1}(C^{m+r}_r-1)+1)$-dimensional.
DOI : 10.4064/cm111-1-5
Keywords: describe natural operators mathcal lifting nowhere vanishing vector fields m dimensional manifolds vector fields mathcal rth order frame bundle mathop inv mathbb describe natural operators mathcal lifting vector fields m manifolds vector fields cases deduce spaces operators mathcal question form r dimensional modules algebras smooth maps r widetilde mathbb mathbb r mathbb mathbb respectively where n k explicitly construct bases these modules particular vector space mathbb natural linear operators lifting vector fields m manifolds vector fields r r r dimensional

J. Kurek 1 ; W. M. Mikulski 2

1 Institute of Mathematics Maria Curie-Sk/lodowska University Pl. Marii Curie-Sk/lodowskiej 1 20-031 Lublin, Poland
2 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
@article{10_4064_cm111_1_5,
     author = {J. Kurek and W. M. Mikulski},
     title = {Lifting vector fields
to the $r$th order frame bundle},
     journal = {Colloquium Mathematicum},
     pages = {51--58},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2008},
     doi = {10.4064/cm111-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-5/}
}
TY  - JOUR
AU  - J. Kurek
AU  - W. M. Mikulski
TI  - Lifting vector fields
to the $r$th order frame bundle
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 51
EP  - 58
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-5/
DO  - 10.4064/cm111-1-5
LA  - en
ID  - 10_4064_cm111_1_5
ER  - 
%0 Journal Article
%A J. Kurek
%A W. M. Mikulski
%T Lifting vector fields
to the $r$th order frame bundle
%J Colloquium Mathematicum
%D 2008
%P 51-58
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-5/
%R 10.4064/cm111-1-5
%G en
%F 10_4064_cm111_1_5
J. Kurek; W. M. Mikulski. Lifting vector fields
to the $r$th order frame bundle. Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 51-58. doi : 10.4064/cm111-1-5. http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-5/

Cité par Sources :