Lifting vector fields
to the $r$th order frame bundle
Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 51-58
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We describe all natural operators $\mathcal{A}$ lifting
nowhere vanishing vector fields $X$ on $m$-dimensional manifolds
$M$ to vector fields $\mathcal{A}(X)$ on the $r$th order frame
bundle $L^rM=\mathop{\rm inv} J^r_0(\mathbb{R}^m, M)$ over~$M$. Next, we describe
all natural operators $\mathcal{A}$ lifting vector fields $X$ on
$m$-manifolds $M$ to vector fields on $L^rM$. In both cases we
deduce that the spaces of all operators $\mathcal{A}$ in question form
free $(m(C^{m+r}_r-1)+1)$-dimensional modules over algebras of all
smooth maps $J^{r-1}_0\widetilde T\mathbb{R}^m\to\mathbb{R}$ and
$J^{r-1}_0T\mathbb{R}^m\to\mathbb{R}$
respectively, where $C^n_k={n!/(n-k)!k!}$. We
explicitly construct bases of these modules. In particular, we find that the
vector space over $\mathbb{R}$ of all natural linear operators lifting
vector fields $X$ on $m$-manifolds $M$ to vector fields on
$L^rM$ is $(m^2C^{m+r-1}_{r-1}(C^{m+r}_r-1)+1)$-dimensional.
Keywords:
describe natural operators mathcal lifting nowhere vanishing vector fields m dimensional manifolds vector fields mathcal rth order frame bundle mathop inv mathbb describe natural operators mathcal lifting vector fields m manifolds vector fields cases deduce spaces operators mathcal question form r dimensional modules algebras smooth maps r widetilde mathbb mathbb r mathbb mathbb respectively where n k explicitly construct bases these modules particular vector space mathbb natural linear operators lifting vector fields m manifolds vector fields r r r dimensional
Affiliations des auteurs :
J. Kurek 1 ; W. M. Mikulski 2
@article{10_4064_cm111_1_5,
author = {J. Kurek and W. M. Mikulski},
title = {Lifting vector fields
to the $r$th order frame bundle},
journal = {Colloquium Mathematicum},
pages = {51--58},
publisher = {mathdoc},
volume = {111},
number = {1},
year = {2008},
doi = {10.4064/cm111-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-5/}
}
TY - JOUR AU - J. Kurek AU - W. M. Mikulski TI - Lifting vector fields to the $r$th order frame bundle JO - Colloquium Mathematicum PY - 2008 SP - 51 EP - 58 VL - 111 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-5/ DO - 10.4064/cm111-1-5 LA - en ID - 10_4064_cm111_1_5 ER -
J. Kurek; W. M. Mikulski. Lifting vector fields to the $r$th order frame bundle. Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 51-58. doi: 10.4064/cm111-1-5
Cité par Sources :