On spaces with the ideal convergence property
Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 43-50.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $I\subseteq P(\omega)$ be an ideal$.$ We continue our investigation of the class of spaces with the $I$-ideal convergence property, denoted $\mathcal{IC}(I)$. We show that if $I$ is an analytic, non-countably generated $P$-ideal then $\mathcal{IC}(I)\subseteq s_{0}.$ If in addition $I$ is non-pathological and not isomorphic to $I_{b},$ then $\mathcal{IC}(I)$ spaces have measure zero. We also present a characterization of the $\mathcal{IC}(I)$ spaces using clopen covers.
DOI : 10.4064/cm111-1-4
Keywords: subseteq omega ideal continue investigation class spaces i ideal convergence property denoted mathcal analytic non countably generated p ideal mathcal subseteq addition non pathological isomorphic mathcal spaces have measure zero present characterization mathcal spaces using clopen covers

Jakub Jasinski 1 ; Ireneusz Rec/law 2

1 Mathematics Department University of Scranton Scranton, PA 18510-4666, U.S.A.
2 Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland
@article{10_4064_cm111_1_4,
     author = {Jakub Jasinski and Ireneusz Rec/law},
     title = {On spaces with the ideal convergence property},
     journal = {Colloquium Mathematicum},
     pages = {43--50},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2008},
     doi = {10.4064/cm111-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-4/}
}
TY  - JOUR
AU  - Jakub Jasinski
AU  - Ireneusz Rec/law
TI  - On spaces with the ideal convergence property
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 43
EP  - 50
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-4/
DO  - 10.4064/cm111-1-4
LA  - en
ID  - 10_4064_cm111_1_4
ER  - 
%0 Journal Article
%A Jakub Jasinski
%A Ireneusz Rec/law
%T On spaces with the ideal convergence property
%J Colloquium Mathematicum
%D 2008
%P 43-50
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-4/
%R 10.4064/cm111-1-4
%G en
%F 10_4064_cm111_1_4
Jakub Jasinski; Ireneusz Rec/law. On spaces with the ideal convergence property. Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 43-50. doi : 10.4064/cm111-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-4/

Cité par Sources :