On spaces with the ideal convergence property
Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 43-50
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $I\subseteq P(\omega)$ be an ideal$.$ We continue our investigation of the
class of spaces with the $I$-ideal convergence property, denoted
$\mathcal{IC}(I)$. We show that if $I$ is an analytic,
non-countably generated $P$-ideal then $\mathcal{IC}(I)\subseteq s_{0}.$ If in
addition $I$ is non-pathological and not isomorphic to $I_{b},$ then
$\mathcal{IC}(I)$ spaces have measure zero. We also present a characterization
of the $\mathcal{IC}(I)$ spaces using clopen covers.
Keywords:
subseteq omega ideal continue investigation class spaces i ideal convergence property denoted mathcal analytic non countably generated p ideal mathcal subseteq addition non pathological isomorphic mathcal spaces have measure zero present characterization mathcal spaces using clopen covers
Affiliations des auteurs :
Jakub Jasinski 1 ; Ireneusz Rec/law 2
@article{10_4064_cm111_1_4,
author = {Jakub Jasinski and Ireneusz Rec/law},
title = {On spaces with the ideal convergence property},
journal = {Colloquium Mathematicum},
pages = {43--50},
year = {2008},
volume = {111},
number = {1},
doi = {10.4064/cm111-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-4/}
}
Jakub Jasinski; Ireneusz Rec/law. On spaces with the ideal convergence property. Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 43-50. doi: 10.4064/cm111-1-4
Cité par Sources :