Cantor–Schroeder–Bernstein quadruples for Banach spaces
Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 105-115.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Two Banach spaces $X$ and $Y$ are symmetrically complemented in each other if there exists a supplement of $Y$ in $X$ which is isomorphic to some supplement of $X$ in $Y$. In 1996, W. T. Gowers solved the Schroeder–Bernstein (or Cantor–Bernstein) Problem for Banach spaces by constructing two non-isomorphic Banach spaces which are symmetrically complemented in each other. In this paper, we show how to modify such a symmetry in order to ensure that $X$ is isomorphic to $Y$. To do this, first we introduce the notion of Cantor–Schroeder–Bernstein Quadruples for Banach spaces. Then we characterize them by using some Banach spaces constructed by W. T. Gowers and B. Maurey in 1997. This new insight into the geometry of Banach spaces complemented in each other leads naturally to the Strong Square-hyperplane Problem which is closely related to the Schroeder–Bernstein Problem.
DOI : 10.4064/cm111-1-10
Keywords: banach spaces symmetrically complemented each other there exists supplement which isomorphic supplement gowers solved schroeder bernstein cantor bernstein problem banach spaces constructing non isomorphic banach spaces which symmetrically complemented each other paper modify symmetry order ensure isomorphic first introduce notion cantor schroeder bernstein quadruples banach spaces characterize using banach spaces constructed gowers maurey insight geometry banach spaces complemented each other leads naturally strong square hyperplane problem which closely related schroeder bernstein problem

Elói Medina Galego 1

1 Department of Mathematics – IME University of São Paulo São Paulo 05315-970, Brazil
@article{10_4064_cm111_1_10,
     author = {El\'oi Medina Galego},
     title = {Cantor{\textendash}Schroeder{\textendash}Bernstein quadruples
 for {Banach} spaces},
     journal = {Colloquium Mathematicum},
     pages = {105--115},
     publisher = {mathdoc},
     volume = {111},
     number = {1},
     year = {2008},
     doi = {10.4064/cm111-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-10/}
}
TY  - JOUR
AU  - Elói Medina Galego
TI  - Cantor–Schroeder–Bernstein quadruples
 for Banach spaces
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 105
EP  - 115
VL  - 111
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-10/
DO  - 10.4064/cm111-1-10
LA  - en
ID  - 10_4064_cm111_1_10
ER  - 
%0 Journal Article
%A Elói Medina Galego
%T Cantor–Schroeder–Bernstein quadruples
 for Banach spaces
%J Colloquium Mathematicum
%D 2008
%P 105-115
%V 111
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-10/
%R 10.4064/cm111-1-10
%G en
%F 10_4064_cm111_1_10
Elói Medina Galego. Cantor–Schroeder–Bernstein quadruples
 for Banach spaces. Colloquium Mathematicum, Tome 111 (2008) no. 1, pp. 105-115. doi : 10.4064/cm111-1-10. http://geodesic.mathdoc.fr/articles/10.4064/cm111-1-10/

Cité par Sources :