Minimal models for $\mathbb Z^d$-actions
Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 461-476
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that on a metrizable, compact, zero-dimensional space every ${\mathbb Z}^d$-action with no periodic points is measurably isomorphic to a minimal ${\mathbb Z}^d$-action with the same, i.e. affinely homeomorphic, simplex of measures.
Keywords:
prove metrizable compact zero dimensional space every mathbb d action periodic points measurably isomorphic minimal mathbb d action affinely homeomorphic simplex measures
Affiliations des auteurs :
Bartosz Frej 1 ; Agata Kwaśnicka 1
@article{10_4064_cm110_2_9,
author = {Bartosz Frej and Agata Kwa\'snicka},
title = {Minimal models for $\mathbb Z^d$-actions},
journal = {Colloquium Mathematicum},
pages = {461--476},
publisher = {mathdoc},
volume = {110},
number = {2},
year = {2008},
doi = {10.4064/cm110-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-9/}
}
Bartosz Frej; Agata Kwaśnicka. Minimal models for $\mathbb Z^d$-actions. Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 461-476. doi: 10.4064/cm110-2-9
Cité par Sources :