Minimal models for $\mathbb Z^d$-actions
Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 461-476.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that on a metrizable, compact, zero-dimensional space every ${\mathbb Z}^d$-action with no periodic points is measurably isomorphic to a minimal ${\mathbb Z}^d$-action with the same, i.e. affinely homeomorphic, simplex of measures.
DOI : 10.4064/cm110-2-9
Keywords: prove metrizable compact zero dimensional space every mathbb d action periodic points measurably isomorphic minimal mathbb d action affinely homeomorphic simplex measures

Bartosz Frej 1 ; Agata Kwaśnicka 1

1 Institute of Mathematics and Computer Science Wrocław University of Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland
@article{10_4064_cm110_2_9,
     author = {Bartosz Frej and Agata Kwa\'snicka},
     title = {Minimal models for $\mathbb Z^d$-actions},
     journal = {Colloquium Mathematicum},
     pages = {461--476},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2008},
     doi = {10.4064/cm110-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-9/}
}
TY  - JOUR
AU  - Bartosz Frej
AU  - Agata Kwaśnicka
TI  - Minimal models for $\mathbb Z^d$-actions
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 461
EP  - 476
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-9/
DO  - 10.4064/cm110-2-9
LA  - en
ID  - 10_4064_cm110_2_9
ER  - 
%0 Journal Article
%A Bartosz Frej
%A Agata Kwaśnicka
%T Minimal models for $\mathbb Z^d$-actions
%J Colloquium Mathematicum
%D 2008
%P 461-476
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-9/
%R 10.4064/cm110-2-9
%G en
%F 10_4064_cm110_2_9
Bartosz Frej; Agata Kwaśnicka. Minimal models for $\mathbb Z^d$-actions. Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 461-476. doi : 10.4064/cm110-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-9/

Cité par Sources :