Reflexively representable but not Hilbert representable compact flows and semitopological semigroups
Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 383-407.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that for many natural topological groups $G$ (including the group ${\mathbb Z}$ of integers) there exist compact metric $G$-spaces (cascades for $G={\mathbb Z}$) which are reflexively representable but not Hilbert representable. This answers a question of T. Downarowicz. The proof is based on a classical example of W. Rudin and its generalizations. A~crucial step in the proof is our recent result which states that every weakly almost periodic function on a compact $G$-flow $X$ comes from a $G$-representation of $X$ on reflexive spaces. We also show that there exists a monothetic compact metrizable semitopological semigroup $S$ which does not admit an embedding into the semitopological compact semigroup ${\mit\Theta}(H)$ of all contractive linear operators on a Hilbert space $H$ (though $S$ admits an embedding into the compact semigroup ${\mit\Theta}(V)$ for certain reflexive $V$).
DOI : 10.4064/cm110-2-5
Keywords: many natural topological groups including group mathbb integers there exist compact metric g spaces cascades mathbb which reflexively representable hilbert representable answers question downarowicz proof based classical example rudin its generalizations crucial step proof recent result which states every weakly almost periodic function compact g flow comes g representation reflexive spaces there exists monothetic compact metrizable semitopological semigroup which does admit embedding semitopological compact semigroup mit theta contractive linear operators hilbert space though admits embedding compact semigroup mit theta certain reflexive

Michael Megrelishvili 1

1 Department of Mathematics Bar-Ilan University 52900 Ramat-Gan, Israel
@article{10_4064_cm110_2_5,
     author = {Michael Megrelishvili},
     title = {Reflexively representable but not {Hilbert
} representable compact flows and semitopological semigroups},
     journal = {Colloquium Mathematicum},
     pages = {383--407},
     publisher = {mathdoc},
     volume = {110},
     number = {2},
     year = {2008},
     doi = {10.4064/cm110-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-5/}
}
TY  - JOUR
AU  - Michael Megrelishvili
TI  - Reflexively representable but not Hilbert
 representable compact flows and semitopological semigroups
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 383
EP  - 407
VL  - 110
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-5/
DO  - 10.4064/cm110-2-5
LA  - en
ID  - 10_4064_cm110_2_5
ER  - 
%0 Journal Article
%A Michael Megrelishvili
%T Reflexively representable but not Hilbert
 representable compact flows and semitopological semigroups
%J Colloquium Mathematicum
%D 2008
%P 383-407
%V 110
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-5/
%R 10.4064/cm110-2-5
%G en
%F 10_4064_cm110_2_5
Michael Megrelishvili. Reflexively representable but not Hilbert
 representable compact flows and semitopological semigroups. Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 383-407. doi : 10.4064/cm110-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-5/

Cité par Sources :