Reflexively representable but not Hilbert
representable compact flows and semitopological semigroups
Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 383-407
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that for many natural topological groups $G$ (including
the group ${\mathbb Z}$ of integers) there exist compact metric $G$-spaces
(cascades for $G={\mathbb Z}$) which are reflexively representable but not Hilbert
representable. This answers a question of T. Downarowicz. The
proof is based on a classical example of W. Rudin and its
generalizations. A~crucial step in the proof is our recent
result which states that every weakly almost periodic function on
a compact $G$-flow $X$ comes from a $G$-representation of $X$ on
reflexive spaces. We also show that there exists a monothetic
compact metrizable semitopological semigroup $S$ which does not
admit an embedding into the semitopological compact semigroup
${\mit\Theta}(H)$ of all contractive linear operators on a Hilbert
space $H$ (though $S$ admits an embedding into the compact
semigroup ${\mit\Theta}(V)$ for certain reflexive $V$).
Keywords:
many natural topological groups including group mathbb integers there exist compact metric g spaces cascades mathbb which reflexively representable hilbert representable answers question downarowicz proof based classical example rudin its generalizations crucial step proof recent result which states every weakly almost periodic function compact g flow comes g representation reflexive spaces there exists monothetic compact metrizable semitopological semigroup which does admit embedding semitopological compact semigroup mit theta contractive linear operators hilbert space though admits embedding compact semigroup mit theta certain reflexive
Affiliations des auteurs :
Michael Megrelishvili  1
@article{10_4064_cm110_2_5,
author = {Michael Megrelishvili},
title = {Reflexively representable but not {Hilbert
} representable compact flows and semitopological semigroups},
journal = {Colloquium Mathematicum},
pages = {383--407},
year = {2008},
volume = {110},
number = {2},
doi = {10.4064/cm110-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-5/}
}
TY - JOUR AU - Michael Megrelishvili TI - Reflexively representable but not Hilbert representable compact flows and semitopological semigroups JO - Colloquium Mathematicum PY - 2008 SP - 383 EP - 407 VL - 110 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-5/ DO - 10.4064/cm110-2-5 LA - en ID - 10_4064_cm110_2_5 ER -
%0 Journal Article %A Michael Megrelishvili %T Reflexively representable but not Hilbert representable compact flows and semitopological semigroups %J Colloquium Mathematicum %D 2008 %P 383-407 %V 110 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-5/ %R 10.4064/cm110-2-5 %G en %F 10_4064_cm110_2_5
Michael Megrelishvili. Reflexively representable but not Hilbert representable compact flows and semitopological semigroups. Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 383-407. doi: 10.4064/cm110-2-5
Cité par Sources :