A matrix formalism for conjugacies of higher-dimensional
shifts of finite type
Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 493-515
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We develop a natural matrix formalism for state splittings and amalgamations of higher-dimensional subshifts of finite type which extends the common notion of strong shift equivalence of ${\mathbb Z}^+$-matrices. Using the decomposition theorem every topological conjugacy between two ${\mathbb Z}^d$-shifts of finite type can thus be factorized into a finite chain of matrix transformations acting on the transition matrices of the two subshifts. Our results may be used algorithmically in computer explorations on topological conjugacies and in the search for new conjugacy invariants.
Keywords:
develop natural matrix formalism state splittings amalgamations higher dimensional subshifts finite type which extends common notion strong shift equivalence mathbb matrices using decomposition theorem every topological conjugacy between mathbb d shifts finite type factorized finite chain matrix transformations acting transition matrices subshifts results may algorithmically computer explorations topological conjugacies search conjugacy invariants
Affiliations des auteurs :
Michael Schraudner 1
@article{10_4064_cm110_2_12,
author = {Michael Schraudner},
title = {A matrix formalism for conjugacies of higher-dimensional
shifts of finite type},
journal = {Colloquium Mathematicum},
pages = {493--515},
publisher = {mathdoc},
volume = {110},
number = {2},
year = {2008},
doi = {10.4064/cm110-2-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-12/}
}
TY - JOUR AU - Michael Schraudner TI - A matrix formalism for conjugacies of higher-dimensional shifts of finite type JO - Colloquium Mathematicum PY - 2008 SP - 493 EP - 515 VL - 110 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-12/ DO - 10.4064/cm110-2-12 LA - en ID - 10_4064_cm110_2_12 ER -
%0 Journal Article %A Michael Schraudner %T A matrix formalism for conjugacies of higher-dimensional shifts of finite type %J Colloquium Mathematicum %D 2008 %P 493-515 %V 110 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm110-2-12/ %R 10.4064/cm110-2-12 %G en %F 10_4064_cm110_2_12
Michael Schraudner. A matrix formalism for conjugacies of higher-dimensional shifts of finite type. Colloquium Mathematicum, Tome 110 (2008) no. 2, pp. 493-515. doi: 10.4064/cm110-2-12
Cité par Sources :