Note on the isomorphism problem for weighted unitary operators associated with a nonsingular automorphism
Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 201-204.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a negative answer to a question put by Nadkarni: Let $S$ be an ergodic, conservative and nonsingular automorphism on $(\widetilde{X},\mathcal{B}_{\widetilde{X}},m)$. Consider the associated unitary operators on $L^2(\widetilde{X},\mathcal{B}_{\widetilde{X}},m)$ given by $\widetilde{U}_Sf=\sqrt{{d(m\circ S)}/{dm}}\cdot (f\circ S)$ and $\varphi\cdot \widetilde{U}_S$, where $\varphi$ is a cocycle of modulus one. Does spectral isomorphism of these two operators imply that $\varphi$ is a coboundary? To answer it negatively, we give an example which arises from an infinite measure-preserving transformation with countable Lebesgue spectrum.
DOI : 10.4064/cm110-1-8
Keywords: negative answer question put nadkarni ergodic conservative nonsingular automorphism widetilde mathcal widetilde consider associated unitary operators widetilde mathcal widetilde given widetilde sqrt circ cdot circ varphi cdot widetilde where varphi cocycle modulus does spectral isomorphism these operators imply varphi coboundary answer negatively example which arises infinite measure preserving transformation countable lebesgue spectrum

K. Frączek 1 ; M. Wysokińska 2

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland and Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-956 Warszawa, Poland
2 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm110_1_8,
     author = {K. Fr\k{a}czek and M. Wysoki\'nska},
     title = {Note on the isomorphism problem for weighted unitary
operators associated with a nonsingular automorphism},
     journal = {Colloquium Mathematicum},
     pages = {201--204},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {2008},
     doi = {10.4064/cm110-1-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-8/}
}
TY  - JOUR
AU  - K. Frączek
AU  - M. Wysokińska
TI  - Note on the isomorphism problem for weighted unitary
operators associated with a nonsingular automorphism
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 201
EP  - 204
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-8/
DO  - 10.4064/cm110-1-8
LA  - en
ID  - 10_4064_cm110_1_8
ER  - 
%0 Journal Article
%A K. Frączek
%A M. Wysokińska
%T Note on the isomorphism problem for weighted unitary
operators associated with a nonsingular automorphism
%J Colloquium Mathematicum
%D 2008
%P 201-204
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-8/
%R 10.4064/cm110-1-8
%G en
%F 10_4064_cm110_1_8
K. Frączek; M. Wysokińska. Note on the isomorphism problem for weighted unitary
operators associated with a nonsingular automorphism. Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 201-204. doi : 10.4064/cm110-1-8. http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-8/

Cité par Sources :