Absolutely continuous, invariant measures for dissipative, ergodic transformations
Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 193-199.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that a dissipative, ergodic {measure preserving transformation} of a $\sigma $-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these.
DOI : 10.4064/cm110-1-7
Keywords: dissipative ergodic measure preserving transformation sigma finite non atomic measure space always has many non proportional absolutely continuous invariant measures ergodic respect each these

Jon Aaronson 1 ; Tom Meyerovitch 1

1 School of Mathematical Sciences Tel Aviv University 69978 Tel Aviv, Israel
@article{10_4064_cm110_1_7,
     author = {Jon Aaronson and Tom Meyerovitch},
     title = {Absolutely continuous, invariant measures
 for dissipative, ergodic transformations},
     journal = {Colloquium Mathematicum},
     pages = {193--199},
     publisher = {mathdoc},
     volume = {110},
     number = {1},
     year = {2008},
     doi = {10.4064/cm110-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-7/}
}
TY  - JOUR
AU  - Jon Aaronson
AU  - Tom Meyerovitch
TI  - Absolutely continuous, invariant measures
 for dissipative, ergodic transformations
JO  - Colloquium Mathematicum
PY  - 2008
SP  - 193
EP  - 199
VL  - 110
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-7/
DO  - 10.4064/cm110-1-7
LA  - en
ID  - 10_4064_cm110_1_7
ER  - 
%0 Journal Article
%A Jon Aaronson
%A Tom Meyerovitch
%T Absolutely continuous, invariant measures
 for dissipative, ergodic transformations
%J Colloquium Mathematicum
%D 2008
%P 193-199
%V 110
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-7/
%R 10.4064/cm110-1-7
%G en
%F 10_4064_cm110_1_7
Jon Aaronson; Tom Meyerovitch. Absolutely continuous, invariant measures
 for dissipative, ergodic transformations. Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 193-199. doi : 10.4064/cm110-1-7. http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-7/

Cité par Sources :