Absolutely continuous, invariant measures
for dissipative, ergodic transformations
Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 193-199
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that a dissipative, ergodic {measure preserving transformation} of a $\sigma $-finite, non-atomic measure space always has many non-proportional, absolutely continuous, invariant measures and is ergodic with respect to each one of these.
Keywords:
dissipative ergodic measure preserving transformation sigma finite non atomic measure space always has many non proportional absolutely continuous invariant measures ergodic respect each these
Affiliations des auteurs :
Jon Aaronson 1 ; Tom Meyerovitch 1
@article{10_4064_cm110_1_7,
author = {Jon Aaronson and Tom Meyerovitch},
title = {Absolutely continuous, invariant measures
for dissipative, ergodic transformations},
journal = {Colloquium Mathematicum},
pages = {193--199},
publisher = {mathdoc},
volume = {110},
number = {1},
year = {2008},
doi = {10.4064/cm110-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-7/}
}
TY - JOUR AU - Jon Aaronson AU - Tom Meyerovitch TI - Absolutely continuous, invariant measures for dissipative, ergodic transformations JO - Colloquium Mathematicum PY - 2008 SP - 193 EP - 199 VL - 110 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-7/ DO - 10.4064/cm110-1-7 LA - en ID - 10_4064_cm110_1_7 ER -
%0 Journal Article %A Jon Aaronson %A Tom Meyerovitch %T Absolutely continuous, invariant measures for dissipative, ergodic transformations %J Colloquium Mathematicum %D 2008 %P 193-199 %V 110 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-7/ %R 10.4064/cm110-1-7 %G en %F 10_4064_cm110_1_7
Jon Aaronson; Tom Meyerovitch. Absolutely continuous, invariant measures for dissipative, ergodic transformations. Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 193-199. doi: 10.4064/cm110-1-7
Cité par Sources :