Poisson suspensions of
compactly regenerative transformations
Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 211-225
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For infinite measure preserving transformations with a compact regeneration property we establish a central limit theorem for visits to good sets of finite measure by points from Poissonian ensembles. This extends classical results about (noninteracting) infinite particle systems driven by Markov chains to the realm of systems driven by weakly dependent processes generated by certain measure preserving transformations.
Keywords:
infinite measure preserving transformations compact regeneration property establish central limit theorem visits sets finite measure points poissonian ensembles extends classical results about noninteracting infinite particle systems driven markov chains realm systems driven weakly dependent processes generated certain measure preserving transformations
Affiliations des auteurs :
Roland Zweimüller 1
@article{10_4064_cm110_1_10,
author = {Roland Zweim\"uller},
title = {Poisson suspensions of
compactly regenerative transformations},
journal = {Colloquium Mathematicum},
pages = {211--225},
publisher = {mathdoc},
volume = {110},
number = {1},
year = {2008},
doi = {10.4064/cm110-1-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-10/}
}
TY - JOUR AU - Roland Zweimüller TI - Poisson suspensions of compactly regenerative transformations JO - Colloquium Mathematicum PY - 2008 SP - 211 EP - 225 VL - 110 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-10/ DO - 10.4064/cm110-1-10 LA - en ID - 10_4064_cm110_1_10 ER -
Roland Zweimüller. Poisson suspensions of compactly regenerative transformations. Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 211-225. doi: 10.4064/cm110-1-10
Cité par Sources :