Poisson suspensions of
compactly regenerative transformations
Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 211-225
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For infinite measure preserving transformations with a compact regeneration property we establish a central limit theorem for visits to good sets of finite measure by points from Poissonian ensembles. This extends classical results about (noninteracting) infinite particle systems driven by Markov chains to the realm of systems driven by weakly dependent processes generated by certain measure preserving transformations.
Keywords:
infinite measure preserving transformations compact regeneration property establish central limit theorem visits sets finite measure points poissonian ensembles extends classical results about noninteracting infinite particle systems driven markov chains realm systems driven weakly dependent processes generated certain measure preserving transformations
Affiliations des auteurs :
Roland Zweimüller  1
@article{10_4064_cm110_1_10,
author = {Roland Zweim\"uller},
title = {Poisson suspensions of
compactly regenerative transformations},
journal = {Colloquium Mathematicum},
pages = {211--225},
year = {2008},
volume = {110},
number = {1},
doi = {10.4064/cm110-1-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-10/}
}
Roland Zweimüller. Poisson suspensions of compactly regenerative transformations. Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 211-225. doi: 10.4064/cm110-1-10
Cité par Sources :