Van der Corput sets in $ \mathbb
Z^d$
Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 1-49
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
In this partly expository paper we study van der
Corput sets in ${\mathbb Z}^d$, with a focus on connections with harmonic
analysis and recurrence properties of measure preserving
dynamical systems. We prove multidimensional versions of
some classical results obtained for $d=1$ by
Kamae and M. Mendès France
and by Ruzsa, establish new characterizations, introduce and
discuss some modifications of van der Corput sets which
correspond to various notions of recurrence, provide
numerous examples and formulate some natural open questions.
Keywords:
partly expository paper study van der corput sets mathbb focus connections harmonic analysis recurrence properties measure preserving dynamical systems prove multidimensional versions classical results obtained kamae mend france ruzsa establish characterizations introduce discuss modifications van der corput sets which correspond various notions recurrence provide numerous examples formulate natural questions
Affiliations des auteurs :
Vitaly Bergelson 1 ; Emmanuel Lesigne 2
@article{10_4064_cm110_1_1,
author = {Vitaly Bergelson and Emmanuel Lesigne},
title = {Van der {Corput} sets in $ \mathbb
Z^d$},
journal = {Colloquium Mathematicum},
pages = {1--49},
year = {2008},
volume = {110},
number = {1},
doi = {10.4064/cm110-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-1/}
}
Vitaly Bergelson; Emmanuel Lesigne. Van der Corput sets in $ \mathbb Z^d$. Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 1-49. doi: 10.4064/cm110-1-1
Cité par Sources :