1Department of Mathematics The Ohio State University Columbus, OH 43210, U.S.A. 2Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 6083) Fédération de Recherche Denis Poisson Université François Rabelais Parc de Grandmont, 37200 Tours, France
Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 1-49
In this partly expository paper we study van der
Corput sets in ${\mathbb Z}^d$, with a focus on connections with harmonic
analysis and recurrence properties of measure preserving
dynamical systems. We prove multidimensional versions of
some classical results obtained for $d=1$ by
Kamae and M. Mendès France
and by Ruzsa, establish new characterizations, introduce and
discuss some modifications of van der Corput sets which
correspond to various notions of recurrence, provide
numerous examples and formulate some natural open questions.
Keywords:
partly expository paper study van der corput sets mathbb focus connections harmonic analysis recurrence properties measure preserving dynamical systems prove multidimensional versions classical results obtained kamae mend france ruzsa establish characterizations introduce discuss modifications van der corput sets which correspond various notions recurrence provide numerous examples formulate natural questions
1
Department of Mathematics The Ohio State University Columbus, OH 43210, U.S.A.
2
Laboratoire de Mathématiques et Physique Théorique (UMR CNRS 6083) Fédération de Recherche Denis Poisson Université François Rabelais Parc de Grandmont, 37200 Tours, France
@article{10_4064_cm110_1_1,
author = {Vitaly Bergelson and Emmanuel Lesigne},
title = {Van der {Corput} sets in $ \mathbb
Z^d$},
journal = {Colloquium Mathematicum},
pages = {1--49},
year = {2008},
volume = {110},
number = {1},
doi = {10.4064/cm110-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-1/}
}
TY - JOUR
AU - Vitaly Bergelson
AU - Emmanuel Lesigne
TI - Van der Corput sets in $ \mathbb
Z^d$
JO - Colloquium Mathematicum
PY - 2008
SP - 1
EP - 49
VL - 110
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-1/
DO - 10.4064/cm110-1-1
LA - en
ID - 10_4064_cm110_1_1
ER -
%0 Journal Article
%A Vitaly Bergelson
%A Emmanuel Lesigne
%T Van der Corput sets in $ \mathbb
Z^d$
%J Colloquium Mathematicum
%D 2008
%P 1-49
%V 110
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/cm110-1-1/
%R 10.4064/cm110-1-1
%G en
%F 10_4064_cm110_1_1
Vitaly Bergelson; Emmanuel Lesigne. Van der Corput sets in $ \mathbb
Z^d$. Colloquium Mathematicum, Tome 110 (2008) no. 1, pp. 1-49. doi: 10.4064/cm110-1-1