Calabi–Yau stable module categories of finite type
Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 257-269.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We describe the stable module categories of the self-injective finite-dimensional algebras of finite representation type over an algebraically closed field which are Calabi–Yau (in the sense of Kontsevich).
DOI : 10.4064/cm109-2-8
Keywords: describe stable module categories self injective finite dimensional algebras finite representation type algebraically closed field which calabi yau sense kontsevich

Jerzy Bia/lkowski 1 ; Andrzej Skowro/nski 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toru/n, Poland
@article{10_4064_cm109_2_8,
     author = {Jerzy Bia/lkowski and Andrzej Skowro/nski},
     title = {Calabi{\textendash}Yau stable module categories of finite type},
     journal = {Colloquium Mathematicum},
     pages = {257--269},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {2007},
     doi = {10.4064/cm109-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-8/}
}
TY  - JOUR
AU  - Jerzy Bia/lkowski
AU  - Andrzej Skowro/nski
TI  - Calabi–Yau stable module categories of finite type
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 257
EP  - 269
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-8/
DO  - 10.4064/cm109-2-8
LA  - en
ID  - 10_4064_cm109_2_8
ER  - 
%0 Journal Article
%A Jerzy Bia/lkowski
%A Andrzej Skowro/nski
%T Calabi–Yau stable module categories of finite type
%J Colloquium Mathematicum
%D 2007
%P 257-269
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-8/
%R 10.4064/cm109-2-8
%G en
%F 10_4064_cm109_2_8
Jerzy Bia/lkowski; Andrzej Skowro/nski. Calabi–Yau stable module categories of finite type. Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 257-269. doi : 10.4064/cm109-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-8/

Cité par Sources :