On the radius of convexity for a class of conformal maps
Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 251-256.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\mathcal{A}$ denote the class of all analytic functions $f$ in the open unit disc $\mathbb{D}$ in the complex plane satisfying $f(0)=0,f'(0)=1$. Let $U(\lambda)\ (0 \lambda \leq 1)$ denote the class of functions $f \in \mathcal{A}$ for which $$ \left|\left(\frac{z}{f(z)}\right)^2f'(z) -1 \right| \lambda \quad \mbox{for} \ z \in \mathbb{D}. $$ The behaviour of functions in this class has been extensively studied in the literature. In this paper, we shall prove that no member of $U_{0}(\lambda) = \left\{f\in U(\lambda): f' '(0) =0 \right\}$ is convex in $\mathbb{D}$ for any $ \lambda $ and obtain a lower bound for the radius of convexity for the family $U_0(\lambda)$. These results settle a conjecture proposed in the literature negatively. We also improve the existing lower bound for the radius of convexity of the family $U_0(\lambda)$.
DOI : 10.4064/cm109-2-7
Keywords: mathcal denote class analytic functions unit disc mathbb complex plane satisfying lambda lambda leq denote class functions mathcal which frac right right lambda quad mbox mathbb behaviour functions class has extensively studied literature paper shall prove member lambda lambda right convex mathbb lambda obtain lower bound radius convexity family lambda these results settle conjecture proposed literature negatively improve existing lower bound radius convexity family lambda

V. Karunakaran 1 ; K. Bhuvaneswari 2

1 School of Mathematics Madurai Kamaraj University Madurai 625021, India
2 chool of Mathematics Madurai Kamaraj University Madurai 625021, India
@article{10_4064_cm109_2_7,
     author = {V. Karunakaran and K. Bhuvaneswari},
     title = {On the radius of convexity for a  class of conformal maps},
     journal = {Colloquium Mathematicum},
     pages = {251--256},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {2007},
     doi = {10.4064/cm109-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-7/}
}
TY  - JOUR
AU  - V. Karunakaran
AU  - K. Bhuvaneswari
TI  - On the radius of convexity for a  class of conformal maps
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 251
EP  - 256
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-7/
DO  - 10.4064/cm109-2-7
LA  - en
ID  - 10_4064_cm109_2_7
ER  - 
%0 Journal Article
%A V. Karunakaran
%A K. Bhuvaneswari
%T On the radius of convexity for a  class of conformal maps
%J Colloquium Mathematicum
%D 2007
%P 251-256
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-7/
%R 10.4064/cm109-2-7
%G en
%F 10_4064_cm109_2_7
V. Karunakaran; K. Bhuvaneswari. On the radius of convexity for a  class of conformal maps. Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 251-256. doi : 10.4064/cm109-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-7/

Cité par Sources :