On minimal homothetical hypersurfaces
Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 239-249
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We give a classification of minimal homothetical hypersurfaces in an
$(n+1)$-dimensional Euclidean space. In fact, when $n\geq 3$, a minimal homothetical hypersurface is a hyperplane, a quadratic cone, a cylinder on a quadratic cone or a cylinder on a helicoid.
Keywords:
classification minimal homothetical hypersurfaces dimensional euclidean space geq minimal homothetical hypersurface hyperplane quadratic cone cylinder quadratic cone cylinder helicoid
Affiliations des auteurs :
Lin Jiu 1 ; Huafei Sun 1
@article{10_4064_cm109_2_6,
author = {Lin Jiu and Huafei Sun},
title = {On minimal homothetical hypersurfaces},
journal = {Colloquium Mathematicum},
pages = {239--249},
publisher = {mathdoc},
volume = {109},
number = {2},
year = {2007},
doi = {10.4064/cm109-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-6/}
}
Lin Jiu; Huafei Sun. On minimal homothetical hypersurfaces. Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 239-249. doi: 10.4064/cm109-2-6
Cité par Sources :