On minimal homothetical hypersurfaces
Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 239-249.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a classification of minimal homothetical hypersurfaces in an $(n+1)$-dimensional Euclidean space. In fact, when $n\geq 3$, a minimal homothetical hypersurface is a hyperplane, a quadratic cone, a cylinder on a quadratic cone or a cylinder on a helicoid.
DOI : 10.4064/cm109-2-6
Keywords: classification minimal homothetical hypersurfaces dimensional euclidean space geq minimal homothetical hypersurface hyperplane quadratic cone cylinder quadratic cone cylinder helicoid

Lin Jiu 1 ; Huafei Sun 1

1 Department of Mathematics Beijing Institute of Technology Beijing, 100081 China
@article{10_4064_cm109_2_6,
     author = {Lin Jiu and Huafei Sun},
     title = {On minimal homothetical hypersurfaces},
     journal = {Colloquium Mathematicum},
     pages = {239--249},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {2007},
     doi = {10.4064/cm109-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-6/}
}
TY  - JOUR
AU  - Lin Jiu
AU  - Huafei Sun
TI  - On minimal homothetical hypersurfaces
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 239
EP  - 249
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-6/
DO  - 10.4064/cm109-2-6
LA  - en
ID  - 10_4064_cm109_2_6
ER  - 
%0 Journal Article
%A Lin Jiu
%A Huafei Sun
%T On minimal homothetical hypersurfaces
%J Colloquium Mathematicum
%D 2007
%P 239-249
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-6/
%R 10.4064/cm109-2-6
%G en
%F 10_4064_cm109_2_6
Lin Jiu; Huafei Sun. On minimal homothetical hypersurfaces. Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 239-249. doi : 10.4064/cm109-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-6/

Cité par Sources :