Smooth Cantor functions
Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 231-238.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We characterise the set on which an infinitely differentiable function can be locally polynomial.
DOI : 10.4064/cm109-2-5
Keywords: characterise set which infinitely differentiable function locally polynomial

T. W. Körner 1

1 DPMMS Centre for Mathematical Sciences Clarkson Road Cambridge, UK
@article{10_4064_cm109_2_5,
     author = {T. W. K\"orner},
     title = {Smooth {Cantor} functions},
     journal = {Colloquium Mathematicum},
     pages = {231--238},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {2007},
     doi = {10.4064/cm109-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-5/}
}
TY  - JOUR
AU  - T. W. Körner
TI  - Smooth Cantor functions
JO  - Colloquium Mathematicum
PY  - 2007
SP  - 231
EP  - 238
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-5/
DO  - 10.4064/cm109-2-5
LA  - en
ID  - 10_4064_cm109_2_5
ER  - 
%0 Journal Article
%A T. W. Körner
%T Smooth Cantor functions
%J Colloquium Mathematicum
%D 2007
%P 231-238
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-5/
%R 10.4064/cm109-2-5
%G en
%F 10_4064_cm109_2_5
T. W. Körner. Smooth Cantor functions. Colloquium Mathematicum, Tome 109 (2007) no. 2, pp. 231-238. doi : 10.4064/cm109-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm109-2-5/

Cité par Sources :